Home
Class 12
MATHS
The value of 2(sin^6t+cos^6t-1)/(sin^4t+...

The value of `2(sin^6t+cos^6t-1)/(sin^4t+cos^4t-1)` is equal to __________

Text Solution

Verified by Experts

The correct Answer is:
2

`sin^4t+cos^4t-1=(sin^2t=cos^2t)^2-2sin^2tcos^2t-1`
`=-2sin^2tcos^2t`
`sin^6t+cos^6t-1=(sin^2t+cos^2t)^3-3sin^2tcos^2t-1`
`=-3sin^2tcos^2t`
Hence, `3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1)`=2`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Archives JEE Main|2 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Archives JEE Advanced single correct answer type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

The value of 3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1) is equal to __________

int sqrt(2+ sin 3t) cos 3t dt

The value of int_(pi/6)^((5pi)/6)sqrt(4-4sin^2t)dt

The derivative of sin^(2)x w.r.t. cos^(2)x is -

Derivative of sin^(-1)x w.r.t. cos^(-1) sqrt(1-x^(2)) is -

Show that 3(sin^4x+cos^4x)-2(sin^6x+cos^6x)=1 .

The correct value of the parameter t of the identity 2(sin ^(6)x + cos ^(6) x)+t (sin ^(4)x+ cos ^(4)x)=-1 is-

The value of (cos ^(6)5^(@)-15 cos ^(4) 5^(@) sin ^(2)5^(@)+15 cos ^(2)5^(@)sin ^(4) 5^(@)-sin ^(6)5^(@)) is equal to-

dx/dt + x cos t = 1/2 sin 2 t

cos t dx/dt + sin t = 1