Home
Class 12
MATHS
Minimum value of (sec^4alpha)/(tan^2beta...

Minimum value of `(sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha),` where `alpha!=pi/2,beta!=pi/2,0

Text Solution

Verified by Experts

The correct Answer is:
8

Let `a =tan^2alpha,b-tan^2beta`
Given expression becomes
`((a+1)^2)/b+((b+1)^2)/a (age,bge0)`
`=(a^2+2a+1)/b+(b^2+2b+1)/a`
`=a^2/b+1/b+b^2/a+1/a+2(a/b+b/a)`
`ge4.4sqrt(a^2/b. 1/b b^2/(a.a))+2(2)`
`=4+4=8`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Archives JEE Main|2 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Archives JEE Advanced single correct answer type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec^2(1/2tan^(-1)(beta/alpha))i se q u a lto (alpha+beta)(alpha^2+beta^2) (b) (alpha+beta)(alpha^2-beta^2) (alpha+beta)(alpha^2+beta^2) (d) none of these

If alpha , beta positive acute angles and sec(alpha+beta)-sec(alpha-beta)=2 cosec alpha show that sinalpha=cos (beta/2)-sin(beta/2)

The minimum value of the expression sin alpha + sin beta+ sin gamma , where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is

Prove that, (sec 8 alpha -1)/(sec 4 alpha-1)= (tan 8 alpha)/(tan 2 alpha

Find the value of (sin (alpha + beta))/(sin (alpha - beta)), "given that" tan alpha = 2 tan beta.

If cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta .

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is (a) -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) (c) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

Prove that , tan(alpha+beta)tan(alpha-beta)=(sin^2alpha-sin^2beta)/(cos^2alpha-sin^2beta)

If alpha+beta =(pi/2) and beta+gamma=alpha , then the tanalpha equals: