Home
Class 12
MATHS
Let alpha, beta be two real numbers sati...

Let `alpha`, `beta` be two real numbers satisfying the following relations `alpha^(2)+beta^(2)=5`, `3(alpha^(5)+beta^(5))=11(alpha^(3)+beta^(3))`
Quadratic equation having roots `alpha` and `beta` is

A

`2`

B

`-(10)/(3)`

C

`-2`

D

`(10)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

`alpha^(2)+beta^(2)=5`
`3(alpha^(5)+beta^(5))=11(alpha^(3)+beta^(3))`
`(alpha^(5)+beta^(5))/(alpha^(3)+beta^(3))=(11)/(3)`
` :. ((alpha^(3)+beta^(3))(alpha^(2)+beta^(2))-(alpha^(2)beta^(2)(alpha+beta)))/(alpha^(3)+beta^(3))=(11)/(3)`
`:. alpha^(2)+beta^(2)-(alpha^(2)beta^(2)(alpha+beta))/((alpha+beta)(alpha^(2)+beta^(2)-alphabeta))=(11)/(3)`
` :. 5-(alpha^(2)beta^(2))/(5-alphabeta)=(11)/(3)` ltbrlt `:. (25-5alphabeta-alpha^(2)beta^(2))/(5-alphabeta)=(11)/(3)`
Let `alphabeta=t`
`(25-5t-t^(2))/(5-t)=(11)/(3)`
`75-15t-3t^(2)=55-11 t`
`75-15t-3t^(2)-55+11t=0`
`-3t^(2)-4t+20=0`
`(t-2)(3t+10)=0`
` :. t=2` or `(-10)/(3)`
So `alpha beta=2`, `alphabeta=(-10)/(3)`
If `alphabeta=2`,
`alpha^(2)+beta^(2)=(alpha+beta)^(2)-2alphabeta`
`:.5=(alpha+beta)^(2)-2xx2`
`(alpha+beta)^(2)=9`
`alpha+beta=+-3`
for `alphabeta=(-10)/(3)`, `(alpha+beta)^(2) lt 0`
`implies x^(2) +- 3x+2=0`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Single correct Answer|69 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

Form the quadratic equation whose roots alpha and beta satisfy the relations alpha beta=768 and alpha^2+beta^2=1600 .

If tan (alpha - beta) = 1, "sec" (alpha + beta) = 2/(sqrt3) , find positive magnitude of alpha and beta .

If the roots of the equation 4x^(2)-5x+2=0" are "(alpha^(2))/(beta)and(beta^(2))/(alpha) the the equation, the roots of which are alphaandbeta , is

If alpha, beta be the roots of the equation x^(2)+x+1=0 , the value of alpha^(4)beta^(4)-alpha^(-1)beta^(-1) is

If (alpha,beta) ∈ R are two of an quadratic equations,then the equation will be given as x^2-(alpha+beta)x+alphabeta =0 If for a quadratic equation,the roots alpha,beta satisfy alpha^2+beta^2 =5, 3(alpha^5+beta^5)=11(alpha^3+beta^3) ,then the equations will be

If alpha,beta roots of ax^2+bx+c =0. Find the quadratic equation whose roots are : alpha+3,beta+3

If alpha,beta are the roots of the quadratic equation x^(2)+px+q=0 ,then the values of alpha^(3)+beta^(3)andalpha^(4)+alpha^(2)beta^(2)+beta^(4) are respectively .

Roots of the equation 3x^2 -6x+4=0 are alpha and beta then find the value of alpha^2 beta + alpha beta^2

IF alpha and beta be the roots of the equation 5x^2+7x+3=0 , find the value of (alpha^3+beta^3)/(alpha^-1+beta^-1) .

If cot alpha cot beta = 3,"show that", (cos (alpha - beta))/(cos (alpha + beta)) =2