Home
Class 12
MATHS
The complex number, z=((-sqrt(3)+3i)(1-i...

The complex number, `z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))`

A

lies on real axis

B

lies on imaginary axis

C

lies in first quadrant

D

lies in second quadrant

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))`
`=(sqrt(3)(-1+sqrt(3)i)(1-i))/(3(sqrt(3)+i)(i)(1+i))`
`=((-1+sqrt(3)i)(1-i))/(sqrt(3)(-1+sqrt(3)i)(1+i))`
`=((1-i)^(2))/(2sqrt(3))=(-2i)/(2sqrt(3))`, which lies on imaginergy axis
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Find the conjugate, modulus and amplitude of the complex number (sqrt(3)-i sqrt(2))/(sqrt(2)-isqrt(2)) .

Express the following expression in the form of a+ib . ((3+isqrt(5))(3-isqrt(5))/((sqrt(3) + 2i)-(sqrt(3)-isqrt(2))))

The value of ((1+sqrt(3i))/(1-sqrt(3i)))^(64)+((1-sqrt(3i))/(1+sqrt(3i)))^(64) is -

Represent the given complex numbers in polar form : i(1-isqrt3)=i-i^2sqrt3=sqrt3+i

The value of ((1+sqrt3i)/(1-sqrt3i))^64+((1-sqrt3i)/(1+sqrt3i))^64

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

The points P,Q and R represent the complex numbers (sqrt2+isqrt2),(sqrt3+i) and (1+isqrt3) respectively in the z-plane. Show that the triangle PQR is isoseceles.

Find the modulus and ampltidue of the complex in number z=(-2-i2 sqrt(3))/(sqrt(3)-i)

Values (s)(-i)^(1/3) is/are (sqrt(3)-i)/2 b. (sqrt(3)+i)/2 c. (-sqrt(3)-i)/2 d. (-sqrt(3)+i)/2

Express the following complex numbers in a+i b form: ((3-2i)(2+3i))/((1+2i)(2-i)) (ii) (2-sqrt(-25))/(1-sqrt(-16))