Home
Class 12
MATHS
If Z is a non-real complex number, then ...

If `Z` is a non-real complex number, then find the minimum value of |`(Imz^5)/(Im^5z)`|

A

`-1`

B

`-2`

C

`-4`

D

`-5`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` Let `Z=a+ib`, `b ne 0` where `Im Z=b`
`Z^(5)=(a+ib)^(5)`
`=a^(5)+^(5)C_(1)a^(4)bi+^(5)C_(2)a^(3)b^(2)i^(2)+^(5)C_(3)a^(2)b^(3)i^(3)+^(5)C_(4)ab^(4)i^(4)+i^(5)b^(5)`
`ImZ^(5)=5a^(4)b-10a^(2)b^(3)+b^(5)`
`y=(ImZ^(5))/(Im^(5)Z)=5((a)/(b))^(4)-10((a)/(b))^(2)+1`
Let `((a)/(b))^(2)=x("say")`, `x in R^(+)`
`y=5x^(2)-10x+1`
`=5[x^(2)-2x]+1`
`=5[(x-1)^(2)]-4`
Hence,`y_(min)=-4`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

For any complex number z find the minimum value of |z|+|z-2i|

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot

If z is a complex number such that abszge2 then the minimum value of abs(z+1/2)

z is a complex number. The minimum value of |z | + I z - 2| is

If z is complex number such that |z|ge2 , minimum value of |z+(1)/(2)| -

For any complex number z, show that the minimum value of |z|+|z-1| is 1.

For any complex number z, show that the minimum value of | z| + | z -1 | is 1.

If z be a complex number and |z+5|le6 ,then find the maximum and minimum values on |z+2|.

if z is any complex number satisfying abs(z-3-2i)le2 then the minimum value of abs(2z-6+5i) is

If z is any complex number such that |z+4|lt=3, then find the greatest value of |z+1|dot