Home
Class 12
MATHS
If a complex number z satisfies |z|^(2)+...

If a complex number `z` satisfies `|z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(barz)/(z))-16=0`, then the maximum value of `|z|` is

A

`sqrt(6)+1`

B

`4`

C

`2+sqrt(6)`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` Let `z=r(costheta+isintheta)`
Then the given equation is `r^(2)+(4)/(r^(2))-2.2cos2theta-16=0`
`implies r^(4)-4r^(2)(cos2theta+4)+4=0`
`implies r^(2)=2(cos2theta+4)+2sqrt((cos2theta+4)^(2)-1)`
The maximum value is obtained when `cos2theta=1`
`:.` The maximum value of `r^(2)=10+2sqrt(24)`
`=(2+sqrt(6))^(2)`
`implies` The maximum value of `r=2+sqrt(6)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Find the complex number z satisfying R e(z^2) =0,|z|=sqrt(3.)

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Let Z_(1) and Z_(2) be two complex numbers satisfying |Z_(1)|=9 and |Z_(2)-3-4i|=4 . Then the minimum value of |Z_(1)-Z_(2)| is

For all complex numbers z_(1),z_(2) satisfying |z_(1)|=12 and |z_(2) -3-4i|=5, then minimum value of |z_(1)-z_(2)| is-

Find the non-zero complex number z satisfying z =i z^2dot

If abs(z+barz)=abs(z-barz) , then the locus of z is

Let A(z_(1)) and B(z_(2)) are two distinct non-real complex numbers in the argand plane such that (z_(1))/(z_(2))+(barz_(1))/(z_(2))=2 . The value of |/_ABO| is

The complex number z satisfies z+|z|=2+8i . find the value of |z|-8

If the complex number z satisfies the equations |z-12|/|z-8i|=(5)/(3) and |z-4|/|z-8| =1, "find" z.

The complex number z satisfying the equation |z-i|=|z+1|=1 is