Home
Class 12
MATHS
The least value of |z-3-4i|^(2)+|z+2-7i|...

The least value of `|z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2)` occurs when z=

A

A. `1+3i`

B

B. `3+3i`

C

C. `3+4i`

D

D. None of these

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` Let `z=x+iy`
Then `|z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2)`
`=3(x^(2)+y^(2)-4x-6y)+107`
`=3[{(x-2)^(2)+(y-3)^(2)]+68`
`:.` The least value occurs when `x=2` and `y=3`
`:.z=2+3i`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

The value of |z|^(2)+|z-3|^(2)+|z-i|^(2) is minimum when z equals -

Let z_(1)=2+3iandz_(2)=3+4i be two points on the complex plane . Then the set of complex number z satisfying |z-z_(1)|^(2)+|z-z_(2)|^(2)=|z_(1)-z_(2)|^(2) represents -

The value of absz^2+abs(z-3)^2+abs(z-i)^2 is minimum when z equals

Find the greatest and the least value of |z_1+z_2| if z_1=24+7i and |z_2|=6.

z=i^5 then the value of (z+z^2+z^3+z^4)

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

If (1+i)^2 /(3 - i) =Z , then Re(z) =

If z is a complex number having least absolute value and |z-2+2i|=1 ,then z= (2-1//sqrt(2))(1-i) b. (2-1//sqrt(2))(1+i) c. (2+1//sqrt(2))(1-i)"" d. (2+1//sqrt(2))(1+i)

Solve : |z|=z+bar(1-2i)

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to