Home
Class 12
MATHS
If |z|=1 and z'=(1+z^(2))/(z), then...

If `|z|=1` and `z'=(1+z^(2))/(z)`, then

A

`z'` lie on a line not passing through origin

B

`|z'|=sqrt(2)`

C

`Re(z')=0`

D

`Im(z')=0`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` `z'=(1+z^(2))/(z)=(zbarz+z)/(z)=z+barz` which is purely real.
`implies Im(z')=0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|z+1|^2) |1/(z+1)|,1/(|z+1|^2) (d) (sqrt(2))/(|z|1""|^2)

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus of omega is equivalent to |z-2|=|z+2|

If z_(1) , z_(2) are complex numbers such that Re(z_(1))=|z_(1)-2| , Re(z_(2))=|z_(2)-2| and arg(z_(1)-z_(2))=pi//3 , then Im(z_(1)+z_(2))=

The complex number z is is such that |z| =1, z ne -1 and w= (z-1)/(z+1). Then real part of w is-

If |z_1|=|z_2|=|z_3|=1 and z_1+z_2+z_3=0 then the area of the triangle whose vertices are z_1, z_2, z_3 is 3sqrt(3)//4 b. sqrt(3)//4 c. 1 d. 2

Let z_(1)andz_(2) be complex numbers such that z_(1)nez_(2)and|z_(1)|=|z_(2)| . If Re(z_(1))gt0andIm(z_(2))lt0 , then (z_(1)+z_(2))/(z_(1)-z_(2)) is

If z_(1) =2 -i, z_(2)=1+i , find |(z_(1) + z_(2) + 1)/(z_(1)-z_(2) + 1)|

Let z be not a real number such that (1+z+z^2)//(1-z+z^2) in R , then prove that |z|=1.

It is given that complex numbers z_1 and z_2 satisfy |z_1|=2 and |z_2|=3. If the included angled of their corresponding vectors is 60^0 , then find the value of 19|(z_1-z_2)/(z_1+z_2)|^2 .