Home
Class 12
MATHS
If |z1|=|z2|=|z3|=1 then value of |z1-z3...

If `|z_1|=|z_2|=|z_3|=1` then value of `|z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2` cannot exceed

A

`6`

B

`9`

C

`12`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` Let `y=|z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2)`
`=(z_(1)-z_(2))(barz_(1)-barz_(2))+(z_(2)-z_(3))(barz_(2)-barz_(3))+(z_(3)-z_(1))(barz_(3)-barz_(1))`
`=6-(z_(1)barz_(2)+z_(2)barz_(1)+z_(2)barz_(3)+barz_(2)z_(3)+z_(3)barz_(1)+z_(1)barz_(3))`...........`(i)`
Now we know
`|z_(1)+z_(2)+z_(3)|^(2) ge 0`
`implies 3+(z_(1)barz_(2)+z_(2)barz_(1)+z_(1)barz_(3)+z_(3)barz_(1)+z_(2)barz_(3)+barz_(2)z_(3)) ge 0`.........`(ii)`
From `(i)` and `(ii)`, `y le 9`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

If |z_1-1|lt=1,|z_2-2|lt=2,|z_(3)-3|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

If z_1, z_2, z_3 are distinct nonzero complex numbers and a ,b , c in R^+ such that a/(|z_1-z_2|)=b/(|z_2-z_3|)=c/(|z_3-z_1|) Then find the value of (a^2)/(z_1-z_2)+(b^2)/(z_2-z_3)+(c^2)/(z_3-z_1)

If |z_1|=|z_2|=|z_3|=1 and z_1+z_2+z_3=0 then the area of the triangle whose vertices are z_1, z_2, z_3 is 3sqrt(3)//4 b. sqrt(3)//4 c. 1 d. 2

If z_(1)^(2)+z_(2)^(2)+z_(3)^(2)-z_(1)z_(3)-z_(1)z_(2)-z_(2)z_(3)=0" ""prove that" " "|z_(2)-z_(3)|=|z_(3)-z_(1)|=|z_(1)-z_(2)|, "where" " " z_(1),z_(2),z_(3) are complex numbers.

If the vertices of an equilateral traingle be represented by the complex numbers z_1 , z_2 , z_3 , then prove that z_1^2+z_2^2+z_3^2=3z_0^2 and z_0 be the circumcenter of the triangle.

If z_1nez_2 and abs(z_2)=1 the abs((z_1-z_2)/(1-barz_1z_2)) =