Home
Class 12
MATHS
All complex numbers 'z' which satisfy th...

All complex numbers 'z' which satisfy the relation `|z-|z+1||=|z+|z-1||` on the complex plane lie on the

A

A. `y=x`

B

B. `y=-x`

C

C. circle `x^(2)+y^(2)=1`

D

D. line `x=0` or on a line segment joining `(-1,0)` to `(1,0)`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` Given `|z-|z+1||^(2)=|z+|z-1||^(2)`
`:. (z-|z+1|)(barz-|z+1|)=(z+|z-1|)(barz+|z-1|)`
`zbarz-z|z+1|-barz|z+1|+|z+1|^(2)`
`=zbarz+z|z-1|+barz|z-1|+|z-1|^(2)`
`|z+1|^(2)-|z-1|^(2)=(z+barz)[|z-1|+|z+1|]`
`(z+1)(barz+1)-(z-1)(barz-1)=(z+barz)[|z-1|+|z+1|]`
`(zbarz+z+barz+1)-(zbarz-z-barz+1)=(z+barz)[|z-1|+|z+1|]`
`2(z+barz)=(z+barz)[|z+1|+|z-1|]`
`(z+barz)[|z+1|+|z-1|-2]=0`
`implies` Either `z+barz=0implies z` is purely imaginary
`impliesz` lies on `y` axis `impliesx=0`
or `|z+1|+|z-1|=2`
`impliesz` lies on the line segment joining `(-1,0)` and `(1,0)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

The complex number z satisfying the equation |z-i|=|z+1|=1 is

The complex number z satisfying the question |(i -z)/(i+z)|=1 lies on-

A complex number z satisfies the equation |Z^(2)-9|+|Z^(2)|=41 , then the true statements among the following are

If |z+i|-|z-1|=|z|-2=0 for a complex number z, then z =

Amplitude of the complex number z= 1 is

The maximum area of the triangle formed by the complex coordinates z, z_1,z_2 which satisfy the relations |z-z_1|=|z-z_2| and |z-(z_1+z_2 )/2| |z_1-z_2| is

If z is complex number, then the locus of z satisfying the condition |2z-1|=|z-1| is (a)perpendicular bisector of line segment joining 1/2 and 1 (b)circle (c)parabola (d)none of the above curves

If the complex number z satisfies the equations |z-12|/|z-8i|=(5)/(3) and |z-4|/|z-8| =1, "find" z.

A complex number z is said to be unimodular if |z|=1 Suppose z_(1)andz_(2) are complex number such that (z_(1)-^(2z)2)/(2-z_(1)z_2) is unimodular and z_(2) is not unimodular .Then the point z_(1) lies on a -

It is given that complex numbers z_1 and z_2 satisfy |z_1|=2 and |z_2|=3. If the included angled of their corresponding vectors is 60^0 , then find the value of 19|(z_1-z_2)/(z_1+z_2)|^2 .