Home
Class 12
MATHS
If z(1), z(2) are two complex numbers su...

If `z_(1)`, `z_(2)` are two complex numbers such that `|(z_(1)-z_(2))/(z_(1)+z_(2))|=1` and `iz_(1)=Kz_(2)`, where ` K in R`, then the angle between `z_(1)-z_(2)` and `z_(1)+z_(2)` is

A

`tan^(-1)((2K)/(K^(2)+1))`

B

`tan^(-1)((2K)/(1-K^(2)))`

C

`-2tan^(-1)K`

D

`2tan^(-1)K`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` `(z_(1)-z_(2))/(z_(1)+z_(2))=cosalpha+isinalpha`
`implies(2z_(1))/(-2z_(2))=(cosalpha+isinalpha+1)/(cosalpha-1+isinalpha)`
`(2cos^(2)alpha//2+2isinalpha//2cosalpha//2)/(2isinalpha//2cosalpha//2-2sin^(2)alpha//2)`
`(2cosalpha//2[cosalpha//2+isinalpha//2])/(2isinalpha//2[cosalpha//2+isinalpha//2])`
`implies(z_(1))/(z_(2))=icot"(alpha)/(2)`
`implies` Given `(z_(1))/(z_(2))=(K)/(1)`
`:.tanalpha//2=-1//K`
`tanalpha=(2tanalpha//2)/(1-tan^(2)alpha//2)implies(-2//K)/(1-1//K^(2))implies(-2K)/(K^(2)-1)`
`alpha=tan^(-1)((2K)/(1-K^(2)))implies2tan^(-1)(K)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If z_(1),z_(2) are two complex numbers , prove that , |z_(1)+z_(2)|le|z_(1)|+|z_(2)|

If z_(1)and z_(2) are conjugate complex number, then z_(1)+z_(2) will be

If z_(1)+z_(2) are two complex number and |(barz_(1)-2bar z_(2))/(2-z_(1)barz_(2))|=1, |z_(1)| ne , then show that |z_(1)|=2 .

If z_(1) , z_(2) are complex numbers such that Re(z_(1))=|z_(1)-2| , Re(z_(2))=|z_(2)-2| and arg(z_(1)-z_(2))=pi//3 , then Im(z_(1)+z_(2))=

If amp(z_(1)z_(2))=0and |z_(1)|=|z_(2)|=1, "then"

If z_(1) and z_(2) are two complex quantities, show that, |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2[|z_(1)|^(2)+|z_(2)|^(2)].

If z_(1)and z_(2) be any two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then prove that, arg z_(1)=arg z_(2) .

If z_(1)andz_(2) be two non-zero complex numbers such that (z_(1))/(z_(2))+(z_(2))/(z_(1))=1 , then the origin and the points represented by z_(1)andz_(2)

If z_1,z_2 are two non zero complex numbers such that z_1/z_2+z_2/z_1=1 then z_1,z_2 and the origin are

Let z_(1) and z_(2) be any two non-zero complex numbers such that 3|z_(1)|=2|z_(2)|. "If "z=(3z_(1))/(2z_(2)) + (2z_(2))/(3z_(1)) , then