Home
Class 12
MATHS
Let arg(z(k))=((2k+1)pi)/(n) where k=1,2...

Let `arg(z_(k))=((2k+1)pi)/(n)` where `k=1,2,………n`. If `arg(z_(1),z_(2),z_(3),………….z_(n))=pi`, then `n` must be of form `(m in z)`

A

`4m`

B

`2m-1`

C

`2m`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `arg(z_(1),z_(2),z_(3)……….z_(n))=pi`
`impliesarg(z_(1))+arg(z_(2))+….+arg(z_(n))=pi+-2mpi`, `m in I`
`implies (pi)/(n)[3+5+7+….+(2n+1)]=pi+-2mpi`
`implies(pi)/(n)[(n)/(2)[6+2(n-1)]]=pi+-2mpi`
`implies3+n-1=1+-2m`
`impliesn=-1=1+-2m`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If z = x + iy and arg ((z-1)/(z+1))=(pi)/(4) , then the locus of (x, y) is

If z_(1)=3i and z_(2)=-1-i , where i=sqrt(-1) find the value of arg ((z_(1))/(z_(2)))

If |z_(1)|=|z_(2)|and argz_(1)~argz_(2)=pi, "show that" " " z_(1)+z_(2)=0.

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then

If z_(1)=1+isqrt3and z_(2)=sqrt3-i, show that arg(z_(1)z_(2))=argz_(1)+argz_(2)

If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

The coordinates of any point on the line-segment joining the points ( x _(1) ,y_(1) , z_(1)) and (x_(2), y_(2),z_(2)) are ((x_(1)+kx_(2))/(k + 1),(y _(1) + ky_(2))/(k + 1),(z_(1)+kz_(2))/(k + 1)) , then the value of k will be _

If arg ((z-1)/(z+1))=pi/4 ,, then show that in complex plane, the locus of z is a cricle.

If z_(1)=1+isqrt3and z_(2)=sqrt3-i, show that arg""(z_(1))/(z_(2))=argz_(1)-argz_(2).

If z_r=cos(ralpha/n^2)+i"sin"(ralpha/n^2) , where r=1,2,3,…n, then lim_(nrarrinfty)z_1z_2...z_n is equal to