Home
Class 12
MATHS
If arg(z^(3//8))=(1)/(2)arg(z^(2)+barz^(...

If `arg(z^(3//8))=(1)/(2)arg(z^(2)+barz^(1//2))`, then which of the following is not possible ?

A

`|z|=1`

B

`z=barz`

C

`arg(z)=0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` We have
`arg(z^(3//8))=(1)/(2)arg(z^(2)+barzz^(1//2))`
`implies2arg(z^(3//8))=arg(z^(2)+barzz^(1//2))`
`impliesarg(z^(3//4))-arg(z^(2)+barzz^(1//2))=0[:'2arg(z)=arg(z^(2))]`
`impliesarg((z^(2)+barzz^(1//2))/(z^(3//4)))=0`
`impliesIm(z^(5//4)+(barz)/(z^(1//4)))=0`
`impliesz^(5//4)+(barz)/(z^(1//4))=bar((z^(5//4)+(barz)/(z^(1//4))))`
`impliesz^(5//4)+(barz)/(z^(1//4))=(barz)^(5//4)+(z)/((barz)^(1//4))`
`impliesz^(5//4)+(barz(barz)^(1//4))/(|z|^(1//2))=(barz)^(5//4)+(zz^(1//4))/(|z|^(1//2))`
`impliesz^(5//4)-(barz)^(5//4)=(z^(5//4)-(barz)^(5//4))/(|z|^(1//2))`
`implies{z^(5//4)-(barz)^(5//4)}(1-(1)/(|z|^(1//2)))=0`
`:. z=barz` or `|z|=1`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If arg""(z-1)/(z+1)=(pi)/(4), show that the locus of z in the complex plane is a circle.

If a rg(z_1)=170^0 and arg(z_2)=70^0 , then find the principal argument of z_1z_2dot

P(z_1),Q(z_2),R(z_3)a n dS(z_4) are four complex numbers representing the vertices of a rhombus taken in order on the complex lane, then which one of the following is/ are correct? (z_1-z_4)/(z_2-z_3) is purely real a m p(z_1-z_4)/(z_2-z_3)=a m p(z_2-z_4)/(z_3-z_4) (z_1-z_3)/(z_2-z_4) is purely imaginary It is not necessary that |z_1-z_3|!=|z_2-z_4|

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then

If arg ((z-1)/(z+1))=pi/4 ,, then show that in complex plane, the locus of z is a cricle.

If z=(sqrt(5-12i)+sqrt(-5-12i)), then the principal value of arg z will be

If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

If z = x + iy and arg ((z-1)/(z+1))=(pi)/(4) , then the locus of (x, y) is

If a complex number z satisfies |z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(barz)/(z))-16=0 , then the maximum value of |z| is

If z_(1), z_(2),z_(3) ,are three complex numbers, prove that z_(1).Im(barz_(2)z_(3))+z_(2).Im(barz_(3)z_(1))+z_(3)Im(bar z_(1)z_(2))=0 where Im(W) = imaginary part of W,where W is a complex number.