Home
Class 12
MATHS
If alpha, beta, gamma in {1,omega,omega^...

If `alpha`, `beta`, `gamma in {1,omega,omega^(2)}` (where `omega` and `omega^(2)` are imaginery cube roots of unity), then number of triplets `(alpha,beta,gamma)` such that `|(a alpha+b beta+c gamma)/(a beta+b gamma+c alpha)|=1` is

A

`3`

B

`6`

C

`9`

D

`12`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` As `|(aalpha+bbeta+cgamma)/(a beta+bgamma+calpha)|=1`
`implies` When `alpha`, `beta`, `gamma` are different, then number of triplet `(alpha,beta,gamma)=` permutation of `1`, `omega` and `omega^(2)=6` and when `alpha-beta=gamma`, number of triplets `=3`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are in A.P. show that cot beta=(sin alpha-sin gamma)/(cos gamma-cos alpha)

If alpha,beta be the imaginary cube root of unity, then the value of (alpha^4+alpha^2beta^2+beta^4) is

If alpha,beta,gamma "are in A.P. show that" cot beta = (sin alpha - sin gamma)/(cos gamma -cos alpha)

if 0ltalpha,beta,gamma lt(pi/2) prove that sin alpha+sin beta+sin gamma gtsin(alpha+beta+gamma)

If alpha , beta be the imaginary cube root of unity, then show that alpha^4+beta^4+ alpha^-1beta^-1=0

Prove that sum_(alpha+beta+gamma = 10) (10 !)/(alpha!beta!gamma!)=3^(10)dot

If alpha,beta,gamma, in (0,pi/2) , then prove that (sin(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

If cos alpha+ cos beta+ cos gamma + cos alpha cos beta cos gamma=0 , show that sin alpha (1+ cos beta cos gamma)=+- sin beta sin gamma .

if alpha+beta+gamma=2pi prove that cos^2alpha+cos^2beta+cos^2gamma-2cosalphacosbetacosgamma=1

If p lt 0 and alpha, beta, gamma are cube roots of p then for any a,b and c show that (aalpha+b beta + cgamma)/(a beta+bgamma +calpha)=omega^(2) where omega is an imaginary cube root of 1.