Home
Class 12
MATHS
The value of (sqrt(3)^(1/3)+(3^(5//6))i)...

The value of `(sqrt(3)^(1/3)+(3^(5//6))i)^(3)` is (where `i=sqrt(-1)`)

A

`24`

B

`-24`

C

`-22`

D

`-21`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `(2(3sqrt(3))((1+isqrt(3))/(2)))^(3)=8xx3(-omega)^(3)=-24`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(5)(i^(r )-i^(r+1)) is, where i=sqrt(-1)

The value of ((1+sqrt(-3))/2)^6+((1-sqrt(-3))/2)^9 is

The value of ((1+sqrt(3i))/(1-sqrt(3i)))^(64)+((1-sqrt(3i))/(1+sqrt(3i)))^(64) is -

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

Show that one value of (4+3i)^(-1//2)+(4-3i)^(-1//2) is (3sqrt2)/(5).

Value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)("when" i=sqrt(-1))-

Value of i^n+i^(n+1)+i^(n+2)+i^(n+3) (where i=sqrt-1 )

Find the value of 4+5[-(1)/(2)-i(sqrt(3))/(2)]^(344)+3[-(1)/(2)+i(sqrt(3))/(2)]^(365) (i=sqrt(-1))

Find the value of (sqrt5+2)div(sqrt3-1) .