Home
Class 12
MATHS
For the real parameter t,the locus of th...

For the real parameter t,the locus of the complex number `z=(1-t^2)+isqrt(1+t^2)` in the complex plane is

A

`pi//6`

B

`5pi//12`

C

`7pi//12`

D

`11pi//12`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `z^(4)=2(1-sqrt(3)i)=4((1)/(2)-(sqrt(3))/(2)i)`
`=4[cos(-(pi)/(3))+isin(-(pi)/(3))]`
`z=sqrt(2)[cos"(2mpi-(pi//3))/(4)+isin"(2mpi-(pi//3))/(4)]`
For `m=1`, `z=sqrt(2)[cos((5pi)/(12))+isin((5pi)/(12))]`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Amplitude of the complex number z= 1 is

Find the amplitude of the complex number z=1+isqrt3 .

Represent the complex number z=1+isqrt(3) in the polar form.

If t is parameter then the locus of the point P(t,(1)/(2t)) is _

Convert the complex number (-16)/(1+isqrt3) into polar form.

Find modulus and argument of the complex numbers z=-1-isqrt(3)

Convert the complex number (-16)/(1+isqrt(3)) into polar form.

The complex numbers 1,-1 and isqrt3 from a triangle which is-

Let i=sqrt(-1) Define a sequence of complex number by z_1=0, z_(n+1) = (z_n)^2 + i for n>=1 . In the complex plane, how far from the origin is z_111 ?

Find the locus of the point (t^2+t+1,t^2-t+1),t in Rdot