Home
Class 12
MATHS
Let z=x+i ydot Then find the locus of P(...

Let `z=x+i ydot` Then find the locus of `P(z)` such that `(1+ z )/z in Rdot`

A

union of lines with equations `x=0` and `y=-1//2`but excluding origin.

B

union of lines with equations `x=0` and `y=1//2`but excluding origin.

C

union of lines with equations `x=-1//2` and `y=0`but excluding origin.

D

union of lines with equations `x=1//2` and `y=0`but excluding origin.

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` Given `(1+barz)/(z)` is real `implies(1+barz)/(z)=(1+z)/(z)`
`impliesbarz+barz^(2)=z+z^(2)implies(barz-z)+(barz-z)(barz+z)=0`
`implies(barz-z)(1+barz+z)=0`
So either `barz=z(z ne 0)` or `z+barz+1=0`
`implies y=0` or `x=(-1)/(2)` but excluding origin.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Let z=x+i ydot Then find the locus of P(z) such that (1+ bar z )/z in Rdot

If z=6-i, then find z-barz

If z=6+i, then find z+barz

If z=5-3i, then find z-barz

If z=5-3i, then find z+barz

If z=4+3i, then find z-barz

If z=4-3i, then find z-barz

If w=z/[z-1/(3i)] and |w|=1, then find the locus of z

if amp (z-1)/(z+1)=pi/3 , then the locus of z is

Identify the locus of z if bar z = bar a +(r^2)/(z-a).