Home
Class 12
MATHS
If A(z(1)), B(z(2)), C(z(3)) are vertice...

If `A(z_(1))`, `B(z_(2))`, `C(z_(3))` are vertices of a triangle such that `z_(3)=(z_(2)-iz_(1))/(1-i)` and `|z_(1)|=3`, `|z_(2)|=4` and `|z_(2)+iz_(1)|=|z_(1)|+|z_(2)|`, then area of triangle `ABC` is

A

`(5)/(2)`

B

`0`

C

`(25)/(2)`

D

`(25)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` `|z_(2)+iz_(1)|=|z_(1)|+|z_(2)|impliesz_(2)`, `iz_(1)`, `o` are collinear
`:.arg(iz_(1))=argz_(2)`
`impliesargi+argz_(1)=argz_(2)`
`impliesargz_(2)-argz_(1)=(pi)/(2)`
`z_(3)=(z_(2)-iz_(1))/(1-i)`
`implies(1-i)z_(3)=z_(2)-iz_(1)`
`impliesz_(3)-z_(2)=i(z_(3)-z_(1))`
`:.(z_(3)-z_(2))/(z_(3)-z_(1))=i`
`impliesarg((z_(3)-z_(2))/(z_(3)-z_(1)))=(pi)/(2)` and `|z_(3)-z_(2)|=|z_(3)-z_(1)|`
`:.AC=BC` and `AB^(2)=AC^(2)+BC^(2)`
`impliesAC=(5)/(sqrt(2))`
Required area `=(1)/(2)xx(5)/(sqrt(2))xx(5)/(sqrt(2))=(25)/(4)`sq. units
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If A(z_1), B(z_2), C(z_3) are the vertices of an equilateral triangle ABC, then arg((z_2+z_3-2z_1)/(z_3-z_2)) is equal to

If z_(1)=-3+4i and z_(2)=12-5i, "show that", |z_(1)z_(2)|=|z_(1)||z_(2)|

If z_(1)=4-3iand z_(2)=-12+5i, "show that", |z_(1)z_(2)|=|z_(1)||z_(2)|

If z_(1)=4-3iand z_(2)=-12+5i, "show that", |z_(1)/z_(2)|=|z_(1)|/|z_(2)|

If z_(1) =2 -i, z_(2)=1+i , find |(z_(1) + z_(2) + 1)/(z_(1)-z_(2) + 1)|

If the complex numbers z_(1),z_(2),z_(3) represents the vertices of an equilaterla triangle such that |z_(1)|=|z_(2)|=|z_(3)| , show that z_(1)+z_(2)+z_(3)=0

If z_(1)=-3+4i and z_(2)=12-5i, "show that", |z_(1)+z_(2)|lt|z_(1)|+|z_(2)|

If z_(1)=-3+4i and z_(2)=12-5i, "show that", |(z_(1))/(z_(2))|=(|z_(1)|)/(|z_(2)|)

If z_(1)=4-3iand z_(2)=-12+5i, "show that", |z_(1)+z_(2)|lt|z_(1)|+|z_(2)|

If the points A(z),B(-z),C(1-z) are the vertices of an equilateral triangle ABC then Re(z) is