Home
Class 12
MATHS
If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c...

If `(1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c)`, then

A

`a,b,c` are in `A.P.`

B

`a,(b)/(2),c` are in `A.P.`

C

`a,(b)/(2),c` are in `H.P.`

D

`a,2b,c` are in `H.P.`

Text Solution

Verified by Experts

The correct Answer is:
A, D

`(a,d)` `(1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c)`
`implies(1)/(a)+(1)/(a-2b)+(1)/(c )+(1)/(c-2b)=0`
`implies((1)/(a)+(1)/(c-2b))+((1)/(a-2b)+(1)/(c ))=0`
`implies(a+c-2b)((1)/(a(c-2b))+(1)/(c(a-2b)))=0`
Either, `a+c-2b=0`
`impliesa,b,c` are in `A.P.` or `(1)/(a(c-2b))+(1)/(c(a-2b))=0`
`impliesac-2bc+ac-2ab=0`
`implies2ac=2b(a+c)`
`impliesb=(ac)/(a+c)impliesa,2b,c` are in `H.P`.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.1|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.2|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If the A.M. of (1)/(b-a) and (1)/(b-c) is (1)/(2(b-x)) , then show that (x-b)^(2) = (x-c)(x-a) .

Let a , b , c ne three distinct non-zero real numbers satisfying the system of equation (1)/(a)+(1)/(a-1)+(1)/(a-2)=1 , 1/b+(1)/(b-1)+(1)/(b-2)=1 , (1)/(c )+(1)/(c-1)+(1)/(c-2)=1 . Then abc= (a) 1 (b)2 (c)3 (d)4

If a, b, c are in A.P. then show that, a((1)/(b)+(1)/(c )), b((1)/(c )+(1)/(a)) and c((1)/(a)+(1)/(b)) are also in A.P.

Simply (x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-a)))^(1/(b-c))xx(x^(1/(c -a)))^(1/(c-b))

If (b-c)^(2), (c-a)^(2), (a-b)^(2) are in A.P. then prove that, (1)/(b-c), (1)/(c-a), (1)/(a-b) are also in A.P.

If a^(2), b^(2), c^(2) are in A.P., prove that (1)/(b+c), (1)/(c+a), (1)/(a+b) are also in A.P.

If a^(2)/(b + c) = b^(2)/(c +a) = c^(2)/(a + b) = 1 , then show that 1/(1+a) + 1/(1 + b) + 1/(1+c) = 1 .

If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)]^(1/2)+tan^(-1)[(b(a+b+c))/(ca)]^(1/2)+tan^(-1)[(c(a+b+c))/(ab)]^(1/2) , then tantheta equals

" if " |{:(a^(2),,b^(2),,c^(2)),((a+1)^(2),,(b+1)^(2),,(c+1)^(2)),((a-1)^(2),,(b-1)^(2),,(c-1)^(2)):}|= k(a -b) (b-c) (c-a) then find the value of k.

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a) (a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)