Home
Class 12
MATHS
Consider a G.P. with first term (1+x)^(n...

Consider a `G.P.` with first term `(1+x)^(n)`, `|x| lt 1`, common ratio `(1+x)/(2)` and number of terms `(n+1)`. Let `S` be sum of all the terms of the `G.P.`, then
`sum_(r=0)^(n)"^(n+r)C_(r )((1)/(2))^(r )` equals (a) `3/4` (b) `1` (c)`2^n` (d) `3^n`

A

`(3//4)^()`

B

`1`

C

`2^(n)`

D

`3^(n)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `sum_(r=0)^(n)'^(n+r)C_(r )((1)/(2))^(r )`
`=^(n)C_(n)((1)/(2))^(0)+^(n+1)C_(n)((1)/(2))^(1)+^(n+2)C_(n)((1)/(2))^(2)+......+^(2n)C_(n)((1)/(2))^(n)`
`="coefficient of"x^(n)"in" (1+x)^(n)((1)/(2))^(0)+(1+x)^(n+1)((1)/(2))^(1)+(1+x)^(n+2)((1)/(2))^(2)+....+(1+x)^(2n)((1)/(2))^(n)`
`="coefficient of "x^(n)"in"S`
`=2^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Consider a G.P. with first term (1+x)^(n) , |x| lt 1 , common ratio (1+x)/(2) and number of terms (n+1) . Let 'S' be sum of all the terms of the G.P. , then The coefficient of x^(n) is 'S' is

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

If n th term of a-series be (2.3^(n-1)+1) ,, find the sum of 1st r terms of the series.

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((n C_r)/((r+3)C_3))