Home
Class 12
MATHS
The expansion 1+x,1+x+x^(2),1+x+x^(2)+x^...

The expansion `1+x,1+x+x^(2),1+x+x^(2)+x^(3),….,1+x+x^(2)+…+x^(20)` are multipled together and the terms of the product thus obtained are arranged in increasing powers of `x` in the form of `a_(0)+a_(1)x+a_(2)x^(2)+…` then,
The value of `(a_(r ))/(a_(n-r))`, where `n` is the degree of the product.

A

(a) `2`

B

(b) `1`

C

(c) `1//2`

D

(d) depends on `r`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` Let `f(x)=(1+x)(1+x+x^(2))(1+x+x^(2)+x^(3))…(1+x+x^(2)+….+x^(20))`
Highest degree of `f(x)`
`=` highest degree of `x` present in the `f(x)`
`=1+2+3+…+20`
`=(20(21))/(2)=210`
Since in the expansion of `f(x)` degree of `x` from zero to `210`, all present so all terms containing `x^(0)`, `x^(1)`, `x^(2)`.....`x^(210)` will be present
`:.` total no. of terms `=210+1=211`
`(1+x)(1+x+x^(2))....(1+x+x^(2)+....+x^(20))`
`=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(210)x^(210)`......`(i)`
Replacing `x` by `1//x`, we get
`(1+(1)/(x))(1+(1)/(x)+(1)/(x^(2)))....(1+(1)/(x)+(1)/(x^(2))+....+(1)/(x^(20)))`
`=a_(0)+(a_(1))/(x)+(a_(2))/(x^(2))+....+(a_(210))/(x_(210))`
Taking `L.C.M` both sides, we get
`(x+1)(x^(2)+x+1)....(x^(20)+x^(19)+....+x+1)`
`=a_(0)x^(210)+a_(1)x^(209)+...+a_(209)x+a_(210)`
Thus `a_(0)+x^(210)+a_(1)x^(209)+....+a_(209)x+a_(210)`
Thus `a_(r )=a_(210-r)`
`a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+.....`
`=(1+x)(1+x+x^(2))...(1+x+x^(2)+...+x^(20))`
Putting `x=1` in `(i)`
`:. a_(0)+a_(1)+a_(2)+....=21!`......`(ii)`
Again putting `x=-1`
`a_(0)-a_(1)+a_(2)-a_(3)+a_(4)=0`.........`(iii)`
Adding equation `(ii)` and `(iii)`, we have
`2[a_(0)+a_(2)+a_(4)+....]=21!`
`:.a_(0)+a_(2)+a_(4)+....=(21!)/(2)=` sum of even coefficients
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

The expansion 1+x,1+x+x^(2),1+x+x^(2)+x^(3),….1+x+x^(2)+…+x^(20) are multipled together and the terms of the product thus obtained are arranged in increasing powers of x in the form of a_(0)+a_(1)x+a_(2)x^(2)+… , then, Number of terms in the product

The expressions 1+x,1+x+x^2,1+x+x^2+x^3,.............1+x+x^2+..............+x^n are mutiplied together and the terms of the product thus obtained are arranged in increasing powers of x in the from of a_0+a_1x+a_2x^2+................., then sum of even coefficients?

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

If a _(r) is the coefficient of x^r in the expansion of (1+ x+x^(2)) ^(n), then the value of a_(1)- 2a_(2) +3a_(3)-4a_(4)+…-2na_(2n) is -

If the expansion in power of x of the function (1)/(( 1 - ax)(1 - bx)) is a_(0) + a_(1) x + a_(2) x^(2) + a_(3) x^(3) + …, then a_(n) is

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x^(2n), find the value of a_0+a_3+a_6++ ,n in Ndot

Let (2x^(2)+3x+4)^(10)=sum_(r=0)^(20)a_(r )x^(r ) , then the value of (a_(7))/(a_(13)) is (a) 6 (b) 8 (c) 12 (d) 16

Write the first five terms of each of the sequences and obtain the corresponding series: a_(1) =a_(2) =2 , a_(n) =a_(n-1) -1, n gt 2