Home
Class 12
MATHS
If (1+px+x^(2))^(n)=1+a(1)x+a(2)x^(2)+…+...

If `(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n)`.
Which of the following is true for `1 lt r lt 2n`

A

(a) `(np+pr)a_(r )=(r+1)a_(r+1)+(r-1)a_(r-1)`

B

(b) `(np-pr)a_(r )=(r+1)a_(r+1)+(r-1-2n)a_(r-1)`

C

(c) `(np-pr)a_(r )=(r+1)a_(r+1)+(r-1-n)a_(r-1)`

D

(d) `(2np+pr)a_(r )=(r+1+n)a_(r+1)+(r+1-n)a_(r-1)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` Differntiating the expansion we have
`n(p+2x)(1+px+x^(2))^(n-1)`
`=a_(1)+2a_(2)x+3a_(3)x^(2)+….+2na_(2n)x^(2n-1)`
Multiplying by `(1+px+x^(2))`
`n(p+2x)(1+a_(1)x+a_(2)x^(2)+….)`
`=(1+px+x^(2))(a_(1)+2a_(2)x+3a_(3)x^(2)+...+2na_(2n)x^(2n-1))`
Comparing coefficient of `x^(r )` both side.
`n[pa_(r )+2a_(r-1)]=(r+1)a_(r+1)+pra_(r )+(r-1)a_(r-1)`
`:.(np-pr)a_(r )=(r+1)a_(r+1)+(r-1-2n)a_(r-1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If (1+x-2x^(2))^(6) = 1 + a_(1)x+a_(2)x^(2) + "……" + a_(12)x^(12) , then find the value of a_(2) + a_(4) +a_(6)+ "……" + a_(12) .

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^() "……" + a_(40)x^(40) , then following questions. The value of a_(0) +a_(2) + a_(4)+ "……" + a_(38) is

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(18)x^(18) . Then

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+.....+a_(18)x^(18) . Then

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The value of a_(1)+3a_(2)+5a_(3)+7a_(4)+….(4n-1)a_(2n) when p=-3 and n in even is

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The remainder obtained when a_(1)+5a_(2)+9a_(3)+13a_(4)+…+(8n-3)a_(2n) is divided by (p+2) is (a) 1 (b) 2 (c) 3 (d) 0

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x^(2n), find the value of a_0+a_3+a_6++ ,n in Ndot

If (18x^2+12x+4)^n = a_0 +a_(1x)+ a_(2x)^2 +......+ a_(2n)x^(2n) , prove that a_r= 2^n3^r ( "^(2n)C_r + "^(n)C_1 "^(2n-2)C_r + "^(n)C_2 "^(2n-4)C_r + ....