Home
Class 12
MATHS
If (1+px+x^(2))^(n)=1+a(1)x+a(2)x^(2)+…+...

If `(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n)`.
The remainder obtained when `a_(1)+5a_(2)+9a_(3)+13a_(4)+…+(8n-3)a_(2n)` is divided by `(p+2)` is (a) 1 (b) 2 (c) 3 (d) 0

A

`1`

B

`2`

C

`3`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `a_(1)+5a_(2)+9a_(3)+…+(8n-3)a_(2n)=sum_(r=1)^(2n)(4r-3)a_(r )`
`=4sum_(r=1)^(2n)ra_(r )-3sum_(r=1)^(2n)a_(r )`
`(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+….+a_(2n)X^(2n)`
so, `sum_(r=1)^(2n)a_(r )=(p+2)^(n)-1`
Differentiating the expansion and substituting `x=1`
`sum_(r=1)^(2n)rar_(r)=n(p+2)^(n)`
`:.sum_(r=1)^(2n)(4r-3)a_(r )=4n(p+2)^(n)-3((p+2)^(n)-1)`
`=(4n-3)(p+2)^(n)+3`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The value of a_(1)+3a_(2)+5a_(3)+7a_(4)+….(4n-1)a_(2n) when p=-3 and n in even is

If (1+x-2x^(2))^(6) = 1 + a_(1)x+a_(2)x^(2) + "……" + a_(12)x^(12) , then find the value of a_(2) + a_(4) +a_(6)+ "……" + a_(12) .

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+.....+a_(18)x^(18) . Then

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(18)x^(18) . Then

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . Which of the following is true for 1 lt r lt 2n

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^() "……" + a_(40)x^(40) , then following questions. The value of a_(0) +a_(2) + a_(4)+ "……" + a_(38) is

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50).x^(50) , then a_(0)+a_(2)+a_(4)+....+a_(50) is

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+.....+a_(2n)x^(2n)" prove that",a_(0)+a_(2)+a_(4)+.......a_(2n)=(1)/(2)(3^(n)+1) .