Home
Class 12
MATHS
If a(i), i=1,2,…..,9 are perfect odd squ...

If `a_(i)`, `i=1,2,…..,9` are perfect odd squares, then `|{:(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9)):}|` is always a multiple of

A

`4`

B

`7`

C

`16`

D

`64`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`(a,c,d)` Let `a_(1)=(2m+1)^(2)`, `a_(2)=(2n+1)^(2)`
`impliesa_(1)-a_(2)=4(m(m+1)-n(n+1))=8k`
so, difference of any two odd square is always a multiple of `8`
Now apply `C_(1)-C_(3)` and `C_(2)-C_(3)`, then `C_(1)` and `C_(2)` both become multiple of `8` so `Delta` always a multiple of `64`.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Single correct Answer|42 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos

Similar Questions

Explore conceptually related problems

If a_(r)= (cos 2r pi + i sin 2r pi)^(1/9) . Then the value of |(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9))| is

If a_(1), a_(2), a_(3), …., a_(n) are in H.P., prove that, a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) +…+ a_(n-1)a_(n) = (n-1)a_(1)a_(n)

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to

If x in R,a_(i),b_(i),c_(i) in R for i=1,2,3 and |{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0 , then which of the following may be true ?

If a_(n)( gt 0) be the n^(th) term of a G.P. then |(log a_(n), log a_(n+1), log a_(n+2)),(log a_(n+3), loga_(n+4),log a_(n+5)),(log a_(n+6),log a_(n+7), log a_(n+8))| is equal to

If the determinant of the matrix [(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))] is denoted by D, then the determinant of the matrix [(a_(1)+3b_(1)-4c_(1),b_(1),4c_(1)),(a_(2)+3b_(2)-4c_(2),b_(2),4c_(2)),(a_(3)+3b_(3)-4c_(3),b_(3),4c_(3))] will be -

The asymptotes of the hyperbola (x^(2))/(a_(1)^(2))-(y^(2))/(b_(1)^(2))=1 and (x^(2))/(a_(2)^(2))-(y^(2))/(b_(2)^(2))=1 are perpendicular to each other. Then, (a) a_(1)/a_(2)=b_(1)/b_(2) (b) a_(1)a_(2)=b_(1)b_(2) (c) a_(1)a_(2)+b_(1)b_(2)=0 (d) a_(1)-a_(2)=b_(1)-b_(2)

The total number of injections (one -one into mappings ) from { a_(1),a_(2),a_(3) ,a_(4)}"to"{b_(1),b_(2),b_(3),b_(4),b_(5),b_(6),b_(7)} is -

Let a_(1),a_(2),a_(3),….,a_(4001) is an A.P. such that (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+...+(1)/(a_(4000)a_(4001))=10 a_(2)+a_(4000)=50 . Then |a_(1)-a_(4001)| is equal to

If a_(1), a_(2), a_(3),…, a_(n) be in A.P. Show that, (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) +….+(1)/(a_(n-1)a_(n)) = (n-1)/(a_(1)a_(n))