Home
Class 12
MATHS
The value of the determinant |{:(cos(the...

The value of the determinant `|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}|` is

A

independent of `theta` for all `lambda in R`

B

independent of `theta` and `alpha` when `lambda=1`

C

independent of `theta` and `alpha` when `lambda=-1`

D

independent of `lambda` for all `theta`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`(a,c)` `|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}|`
`=(1)/(sinalphacosalpha)|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sinthetasinalpha,costhetasinalpha,sin^(2)alpha),(-costhetacosalpha,sinthetacosalpha,lambdacos^(2)alpha):}|`
[Multiplying `R_(2)` and `R_(3)` by `sin alpha ` and `cos alpha`, respectively]
`=(1)/(sinalphacosalpha)xx|{:(0,0,cos2alpha+sin^(2)alpha+lambdacos^(2)alpha),(sinthetasinalpha,costhetasinalpha,sin^(2)alpha),(-costhetacosalpha,sinthetacosalpha,lambdacos^(2)alpha):}|`
[Applying `R_(1)toR_(1)+R_(2)+R_(3)`]
`=(cos2alpha+sin^(2)alpha+lambdacos^(2)alpha)/(sinalpha*cosalpha)|{:(sinthetasinalpha,costhetasinalpha),(-costhetacosalpha,sintheta cosalpha):}|`
`=(cos^(2)alpha+lambdacos^(2)alpha)|{:(sintheta,costheta),(-costheta,sintheta):}|=(1+lambda)cos^(2)alpha`
Therefore, the given determinants is independent of `theta` for all real values of `lambda`.
Also , `lambda=-1`, then it is independent of `theta` and `alpha`.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Single correct Answer|42 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos

Similar Questions

Explore conceptually related problems

Evaluate the determinants |{:(costheta,-sintheta),(sintheta,costheta):}|

If determinant |[cos(theta+phi),-sin(theta+phi),cos2phi],[sin theta,costheta, sinphi],[-costheta,sintheta,cosphi]| is a. positive b. independent of theta c. independent of phi d. none of these

Simplify costheta[(costheta,sin theta),(-sintheta,costheta)]+sin[(sintheta,-costheta),(costheta,sintheta)]

Evalute : |{:(cos^2 theta,costhetasintheta,-sintheta),(costhetasintheta,sin^2theta,costheta),(sintheta,-costheta,0):}|

|{:(cosalpha cos beta,cos alpha sin beta ,-sin alpha),(-sin beta,cos beta," "0),(sin alpha cosbeta ,sinalpha sin beta ,""cos alpha):}|

. Let f(theta)=|{:(cos^2theta,costhetasintheta,-sintheta),(sinthetacostheta,sin^2theta,costheta),(sintheta,-costheta,0):}|,"find" f(pi/3) .

Evaluate intcos2theta log((costheta+sintheta)/(costheta-sintheta))d theta

If tantheta=(sin alpha-cos alpha)/(sinalpha+cosalpha)1 then

If sec(theta+alpha)+sec(theta-alpha)=2/costheta . then cos^2theta is equal to