Home
Class 12
MATHS
PQ and QR are two focal chords of an ell...

PQ and QR are two focal chords of an ellipse and the eccentric angles of P,Q,R are `2alpha, 2beta, 2 gamma`, respectively then `tan beta gamma` is equal to

A

`cot alpha`

B

`cot^(2)alpha`

C

`2 cot alpha`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(x^(2))/(a^(2)) +(y^(2))/(b^(2)) =1`
`P(a cos 2alpha, b sin 2 alpha), Q (a cos 2 beta, b sin 2 beta)`
`R(a cos 2 gamma,b sin 2 gamma)`
Equation of chord PQ is
`(x)/(a) cos (alpha + beta) + (y)/(b) sin (alpha + beta) = cos (alpha - beta)`
PQ passes through the focus (ae,0)
`:. e = (cos(alpha-beta))/(cos(alpha+beta))`
`:. (cos(alpha-beta))/(cos(alpha+beta)) =-(cos(alpha-gamma))/(cos(alpha+gamma))`
Apply componendo and dividendo, we get
`(cos(alpha+beta)+cos(alpha-beta))/(cos(alpha+beta)-cos(alpha-beta))=(cos(alpha+gamma)-cos(alpha-gamma))/(cos(alpha+gamma)+cos(alpha-gamma))`
`(2 cos alpha cos beta)/(2 sin alpha sin beta) = (2 sin alpha sin gamma)/(2 cos alpha cos gamma)`
`tan beta tan gamma = cot^(2) alpha`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos
  • EQAUTION OF STRAIGHT LINE AND ITS APPLICATION

    CENGAGE PUBLICATION|Exercise DPP 3.2|13 Videos

Similar Questions

Explore conceptually related problems

If alpha+beta =(pi/2) and beta+gamma=alpha , then the tanalpha equals:

If alpha, beta, gamma are positive acute angles, prove that sin alpha+sin beta+ sin gamma gt sin (alpha+ beta+ gamma)

If alpha, beta , gamma are angles of a triangle then the value of (sin^(2) alpha + sin ^(2) beta+sin ^(2) gamma-2 cos alpha cos beta cos gamma) is-

If alpha and beta are the eccentric angles of the extremities of a focal chord of an ellipse, then prove that the eccentricity of the ellipse is (sinalpha+sinbeta)/("sin"(alpha+beta))

If (alpha +beta ) and (alpha - beta ) are the eccentric angles of the points P and Q respectively on the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 show that the equation of the chord PQ is (x)/(a) cos alpha+(y)/(b)sin alpha = cos beta .

If alpha + beta =(pi)/(2)and beta + gamma =alpha, then the value of tan alpha is -

If (alpha+beta) and (alpha-beta) are the eccentric angles of the points P and Q respectively on the ellipse x^2/25+y^2/9=1 .Show that the equation of the chord PQ is x/5cosalpha+y/3sinalpha=cosbeta

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to