Home
Class 12
MATHS
If x cos alpha +y sin alpha = 4 is tange...

If `x cos alpha +y sin alpha = 4` is tangent to `(x^(2))/(25) +(y^(2))/(9) =1`, then the value of `alpha` is

A

`tan^(-1)(3//sqrt(7))`

B

`tan^(-1)(7//3)`

C

`tan^(-1)(sqrt(3)//7)`

D

`tan^(-1)(3//7)`

Text Solution

Verified by Experts

The correct Answer is:
A

`x cos alpha + ysin alpha =4`
`:. y = (-cot alpha) x + 4 cosec alpha`
`:. m =- cot alpha, c = 4 cosec alpha, a^(2) = 25, b^(2) =9`
Now `c^(2) = a^(2)m^(2) + b^(2)`
`:. 16 cosec^(2) alpha = 25 cot^(2) alpha +9`
`:. 16 (1+cot^(2) alpha) = 25 cot^(2) alpha +9`
`:. 7 = 9 cot^(2) alpha rArr cot alpha = (sqrt(7))/(3) rArr tan alpha = (3)/(sqrt(7))`
`:. alpha = tan^(-1) (3//sqrt(7))`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos
  • EQAUTION OF STRAIGHT LINE AND ITS APPLICATION

    CENGAGE PUBLICATION|Exercise DPP 3.2|13 Videos

Similar Questions

Explore conceptually related problems

Show that the straight line x cosalpha+y sin alpha=p is a tangent to the curve (x^(m))/(a^(m))+(y^(m))/(b^(m))=1 , if (a cos alpha)^((m)/(m-1))+(b sin alpha)^((m)/(m-1))=p^((m)/(m-1))

Find the condition that the straight line x cos alpha+ y sin alpha=p is a tangent to the : ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

If two distinct tangents can be drawn from the point (alpha, alpha+1) on different branches of the hyperbola (x^(2))/(9)-(y^(2))/(16)=1 , then find the values of alpha .

If x = m cosec alpha and y = n cot alpha , then the value of (x^2)/(m^2) - (y^2)/(n^2) is

If the straight line y= x sin alpha+ a sec alpha be a tangent ot the circle x^(2)+y^(2)=a^(2) , then show that cos^(2)alpha=1

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" (2(1-cos (alpha - beta)))/(cos beta - cos alpha)^(2)=

If alpha, beta and gamma are angle such that tan alpha + tan beta+tan gamma= tan alpha tan beta tan gammaand x=cos alpha + I sin alpha, y=cos beta+ I sin beta and z= cos gamma+ I sin gamma, then the value of xyz is -

If the line x cos alpha+ y sin alpha=p be a normal to the hyperbola b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2), show that, p^(2)(a^(2) sec ^(2) alpha- b^(2)"cosec"^(2) alpha)=(a^(2)+b^(2))^(2)

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" "tan" (alpha + beta)/2=

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" (sin alpha - cos alpha - sin beta + cos beta)/(sin alpha + cos alpha - sin beta - cos beta)=