Home
Class 12
MATHS
If omega is one of the angles between ...

If `omega` is one of the angles between the normals to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` `(b>a)` at the point whose eccentric angles are `theta` and `pi/2+theta` , then prove that `(2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))`

A

`(e^(2))/(sqrt(1-e^(2)))`

B

`(e^(2))/(sqrt(1+e^(2)))`

C

`(e^(2))/(1-e^(2))`

D

`(e^(2))/(1+e^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

The equations of the normals to the ellipse `(x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1` at the points whose eccentric angles are `theta` and `(pi)/(2) + theta` are
`ax sec theta - by cosec theta = a^(2) -b^(2)` and `-ax cosec theta - by sec theta = a^(2) -b^(2)` respectively.
Since `omega` is the angle between these two normals. Therefore,
`tan omega=|((a)/(b)tan theta+(a)/(b)cot theta)/(1-(a^(2))/(b^(2)))|`
`rArr tan omega = |(ab(tan theta + cot theta))/(b^(2)-a^(2))|`
`rArr tan omega = |(2ab)/((sin 2 theta)(b^(2)-a^(2)))|`
`rArr tan omega = (2ab)/((a^(2)-b^(2))sin 2 theta)`
`rArr tan omega = (2a^(2)sqrt(1-e^(2)))/(a^(2)e^(2)sin2 theta)`
`rArr (2 cot omega)/(sin 2 theta) = (e^(2))/(sqrt(1-e^(2)))`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos
  • EQAUTION OF STRAIGHT LINE AND ITS APPLICATION

    CENGAGE PUBLICATION|Exercise DPP 3.2|13 Videos

Similar Questions

Explore conceptually related problems

If e be the eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) = 1 , then e =

The slop of the tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 at the point (a cos theta, b sin theta) - is

The slop of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( a sec theta , b tan theta) is -

Prove that (cos2theta)/(1+sin2theta)=tan(pi/4-theta) .

Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

Find the eccentric angles of the extremities of the latus recta of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then find the ecentricity angle theta of point of contact.

The slope of the normal to the circle x^(2)+y^(2)=a^(2) at the point (a cos theta, a sin theta) is-

If x=a sin theta and y=b tan theta , then prove that (a^(2))/(x^(2))-(b^(2))/(y^(2))=1 .

If sec theta+tan theta = x , prove that sin theta= (x^2-1)/(x^2+1)