Home
Class 12
MATHS
The line A x+B y+C=0 cuts the circle x^2...

The line `A x+B y+C=0` cuts the circle `x^2+y^2+a x+b y+c=0` at `Pa n dQ` . The line `A^(prime)x+B^(prime)x+C^(prime)=0` cuts the circle `x^2+y^2+a^(prime)x+b^(prime)y+c^(prime)=0` at `Ra n dSdot` If `P ,Q ,R ,` and `S` are concyclic, then show that `|a-a ' b-b ' c-c ' A B C A ' B ' C '|=0`

Text Solution

Verified by Experts

P and Q are the points of intersection of the line
`L_(1)-=Ax+By+C=0` (1)
and the circle
`S_(1)-= x^(2)+y^(2)+ax+by+c=0` (2)
R and S are the ponits of intersection of the line
`L_(2)-=A'x+B'y+C'=0` (3)
and the circle
`S_(2) -= x^(2)+y^(2)+a'x+b'y+c'=0` (4)

The radical axis of the circles `S_(1)=` and `S_(2)=` is
`S_(1)- S_(2)=0`
i.e., `L_(3)-= (a-a')x+(b-b')y+(c-c')=0` (5)
If P,Q,R, and S are concyclic and `S_(3)=` is the equation of this circle thorugh P,Q,R, and S, line (1) is the radical axis of the circle `S_(1)=0` and `S_(3)=0` and line (2) is the radical axis of the circles `S_(2)` and `S_(3)=`0.
Thus, the straight line gives by (5),(1), and (3) are the radical axsed of the circles `S_(1)=0,S_(2)=0` and `S_(3)=0` taken in pairs. Since the radical axes of the three circles taken in pairs concurrent or parrallel, we have
`|{:(a-a',b-b',c-c'),(A,B,C),(A',B',C'):}|=0`
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 4.1|1 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 4.2|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos

Similar Questions

Explore conceptually related problems

If the circle x^2+y^2+2gx+2fy+c=0 bisects the circumference of the circle x^2+y^2+2g^(prime)x+2f^(prime)y+c^(prime)=0 then prove that 2g^(prime)(g-g^(prime))+2f^(prime)(f-f^(prime))=c-c '

Find the condition if lines x=a y+b ,z=c y+da n dx=a^(prime)y+b^(prime), z=c^(prime)y+d ' are perpendicular.

If the circle x^2+y^2+2x+3y+1=0 cuts x^2+y^2+4x+3y+2=0 at A and B , then find the equation of the circle on A B as diameter.

If the chord of contact of tangents from a point on the circle x^(2) + y^(2) = a^(2) to the circle x^(2)+ y^(2)= b^(2) touches the circle x^(2) + y^(2) = c^(2) , then a, b, c are in-

The equations of tangents to the circle x^2+y^2-6x-6y+9=0 drawn from the origin in (a). x=0 (b) x=y (c) y=0 (d) x+y=0

If x/(b +c) = y/(c+a) = z/(a + b) , then show that a/(y+z-x) = b/(z+x - y) = c/(x + y - z) .

If (a x^2+b x+c)y+(a^(prime)x^2+b^(prime)x+c^(prime))=0 and x is a rational function of y , then prove that (a c^(prime)-a^(prime)c)^2=(a b^(prime)-a^(prime)b)xx(b c^(prime)-b^(prime)c)dot

If the quadrilateral formed by the lines a x+b y+c=0,a^(prime)x+b^(prime)y+c=0,a x+b y+c^(prime)=0,a^(prime)x+b^(prime)y+c^(prime) =0 has perpendicular diagonals, then (a) b^2+c^2=b^('2)+c^('2) (b) c^2+a^2=c^('2)+a^('2) (c) a^2+b^2=a^('2)+b^('2) (d) none of these

If x^2+y^2=1, then (a) y y^('')-2(y^(prime))^2+1=0 (b) yy^('')+(y^(prime))^2+1=0 (c) y y^('')+(y^(prime))^(-2)-1=0 (d) y y^('')+2(y^(prime))^2+1=0

If x/(b + c -a) = y/(c + a - b) = z/(a + b -c) , then show that (b -c) x + (c-a) y + (a -b) z = 0 .