Home
Class 12
MATHS
In DeltaABC, bc=2b^(2)cos A+2c^(2)cos A-...

In `DeltaABC, bc=2b^(2)cos A+2c^(2)cos A-4bc cos^(2)A`, then `Delta ABC` is

A

isosceles but not necessarily equilateral

B

equilateral

C

right angled but not necessarily isosceles

D

right angled isosceles

Text Solution

Verified by Experts

The correct Answer is:
A

`bc=2b^(2)cos A+2c^(2)cos A-4bc cos^(2)A`
`rArr bc=2 cos A(b^(2)+c^(2)-2bc cos A)`
`rArr bc=(2 cos A)a^(2)`
`rArr (bc)/(2a^(2))=cos A=(b^(2)+c^(2)-a^(2))/(2bc)`
`rArr b^(2)c^(2)=a^(2)(b^(2)+c^(2)-a^(2))`
`rArr (a^(2)-b^(2))(a^(2)-c^(2))=0`
Thus, triangle is isosceles.
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If in a triangle DeltaABC,a^(2)cos^(2)A-b^(2)-c^(2)=0 , then

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

If in a DeltaABC , a^2cos^2A=b^2+c^2, then

If cos^2A+cos^2B+cos^2C=1, t h e n ABC is

If in a triangle ABC, cos^(2)A + cos^(2)B + cos^(2)C =1 , then show that the triangle is right angled.

In DeltaABC , if b(b +c) = a^(2) and c(c + a) = b^(2) , then |cos A.cos B. cos C| is______

In triangle ABC, if a^(2) + b^(2) +c^(2) -bc -ca -ab=0, then the value of sin ^(2)A+ sin ^(2)B+sin ^(2)C is -

If in a triangle ABC, a cos ^(2)""C/2+ c cos ^(2)""A/2=(3b)/(2), then the sides a, b and c-

Using vectors , prove that in a triangle ABC a^(2)= b^(2) + c^(2) - 2bc cos A where a,b,c are lengths of the ideas opposite to the angles A,B,C of triangle ABC respectively .