Home
Class 12
MATHS
Given a triangle DeltaABC such that si...

Given a triangle `DeltaABC` such that `sin^2 A + sin^2C = 1001.sin^2B`. Then the value of `(2(tanA+tanC)*tan^2B)/(tanA+tanB+tanC)` is

A

`(1)/(2000)`

B

`(1)/(1000)`

C

`(1)/(500)`

D

`(1)/(250)`

Text Solution

Verified by Experts

The correct Answer is:
D

`sin^(2)A+sin^(2)C=1001sin^(2)B`
`rArr a^(2)+c^(2)=1001b^(2)` (using sine rule)
Now, `(2(tan A+ tan C).tan^(2)B)/(tan A + tan B + tan C)`
`=(2(tan A + tan C).tan^(2)B)/(tan A.tan B. tan C)`
`=2((cot A + cot C)/(cot B))`
`=(2(cos A sin C + sin A cos C))/(sin A. sin C. cos B) sin B`
`=(2 sin (pi-B).sin B)/(sin A sin C cos B)`
`=(2 sin^(2)B)/(sin A sin C cos B)`
`=(2xx2b^(2))/(2ab.cos B)`
`=(2xx2b^(2))/(a^(2)+c^(2)-b^(2))=(2xx2b^(2))/(1000b^(2))=(1)/(250)`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, show that (a sin C)/(b - a cosC)= tanA .

In any triangle ABC show that b^2sin2C+c^2sin 2B=abc/R

A triangle ABC is such that sin (2A + B) = 1/2 . If A,B,C are in A.P., then find the value of A,B and C.

If sin^(2)B+ sin^(2)C = sin^(2)A , then the triangle ABC is-

The perimeter of a triangle ABC iws equal to 2 (sin A+sin B+ sin C). If a=1, then the value of angle A is-

In any triangle ABC prove that sin2A+sin2B+sin2C=(abc)/(2R^3)

In triangle ABC if sin^2B+sin^2C=sin^2A then

If tan (A+B) = 3 tan A , "show that" sin (2A +2B) + sin 2A = 2 sin 2 B

In Delta ABC,if cos A+sin A-2/(cosB+sin B)=0, then the value of ((a+b)/c)^4 is

In triangle ABC, (i) asin(A/2 + B) = (b+c) sin A/2