Home
Class 12
MATHS
In a triangle ABC if 2Delta^(2)=(a^(2)b^...

In a triangle ABC if `2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2))`, then it is

A

equilateral

B

isosceles but not right angled

C

isosceles right angled

D

right angled

Text Solution

Verified by Experts

The correct Answer is:
D

We have
`2 Delta^(2)(a^(2)+b^(2)+c^(2))=a^(2)b^(2)c^(2)`
`therefore a^(2)+b^(2)+c^(2)=((abc)/(Delta))^(2).(1)/(2)=8R^(2)`
`therefore sin^(2)A+sin^(2)B+sin^(2)C=2`
`therefore cos 2A+cos 2B+cos 2C=-1`
`therefore -1-4 cos A cos B cos C=-1`
`therefore cos A cos B cos C = 0`
`cos a =0` or `cos B=0` or `cos C = 0`
`therefore` Triangle is right angled.
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC if a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2) then the values of B will be-

In any triangle ABC, if 8R^(2) =a^(2) + b^(2) +c^(2) , prove that, the triangle is right angled.

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2x^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

In a triangle ABC, if (a^(2)+ b^(2))sin(A-B) = (a^(2)-b^(2))sin(A+B) (where a ne b ), prove that the triangle is right angled.

If in a triangle DeltaABC,a^(2)cos^(2)A-b^(2)-c^(2)=0 , then

In triangle ABC, if a^(2) + b^(2) +c^(2) -bc -ca -ab=0, then the value of sin ^(2)A+ sin ^(2)B+sin ^(2)C is -

In any triangle ABC, If b^(2) = a(c+a), c^(2) = b(a+b) , then prove that, cosAcosB cosC =-1/8 .

If in a triangle ABC, a cos ^(2)""C/2+ c cos ^(2)""A/2=(3b)/(2), then the sides a, b and c-