Home
Class 12
MATHS
If in any triangle, the area DeltaABC le...

If in any triangle, the area `DeltaABC le(b^(2)+c^(2))/(lambda)`, then the largest possible numerical value of `lambda` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
D

`Delta le(b^(2)+c^(2))/(lambda)`
`rArr (1)/(2)bc sin A le(b^(2)+c^(2))/(lambda)`
`rArr bc((1)/(2)lambda sin A-2)le (b-c)^(2)`
Since sin `A le 1`, the above inequality will always be satisfied if `lambda = 4`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If in a triangle DeltaABC,a^(2)cos^(2)A-b^(2)-c^(2)=0 , then

If in a triangle DeltaABC,a^2cos^2A-b^2-c^2=0, then

In any triangle ABC, the value of (b^(2)sin 2C + c^(2) sin 2B) is-

S , T are two foci of an ellipse and B is a one end point of minor axis . If STB be a equilateral triangle and eccentricity of the ellipse be (1)/(lambda) , then the value of lambda is _

If int (dx)/(1+sinx) = tan (x/2 - pi/lambda) + b , then the value of lambda is -

In a Delta, (a+b+c)(b+c-a)= lambdabc, when lambda inI, then greatest value of lambda is

Find the value of tan A, if area of Delta ABC is a^(2) -(b-c)^(2).

In a triangle ABC, prove that (b + c)/(a) le cosec.(A)/(2)

If the equations x^(2)+2lambdax+lambda^(2)+1=0 , lambda in R and ax^(2)+bx+c=0 , where a , b , c are lengths of sides of triangle have a common root, then the possible range of values of lambda is

In a triangle A B CifB C=(3)^(1/2) and A C=2, then what is the maximum possible value of angle A ?