Home
Class 12
MATHS
In any triangle ABC, if 2Delta a-b^(2)c=...

In any triangle ABC, if `2Delta a-b^(2)c=c^(3)`, (where `Delta` is the area of triangle), then which of the following is possible ?

A

B is obtuse

B

A is obtuse

C

C is obtuse

D

B is right angle

Text Solution

Verified by Experts

The correct Answer is:
B

`2Delta a-b^(2)c=c^(3)`
`rArr 2Delta a^(2)b=abc(b^(2)+c^(2))`
`rArr ((a^(2)b)abc)/(2R)=abc(b^(2)+c^(2))`
`rArr (a^(2)b)/(2R)=b^(2)+c^(2)`
`rArr a^(2)sin B=b^(2)+c^(2)`
If sin B = 1, then `a^(2)=b^(2)+c^(2)`, which is not possible
`thereofre sin B ne 1`
`therefore cos A = (b^(2)+c^(2)-a^(2))/(2bc)`
`=(a^(2)sinB-a^(2))/(2bc)`
`lt 0`
`therefore` A is obtuse
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, which of the following is false?

If Delta =a^(2) -(b-c) ^(2), where Delta is the area of the triangle ABC, then tan A is equal to-

In any triangle ABC, if 8R^(2) =a^(2) + b^(2) +c^(2) , prove that, the triangle is right angled.

In a triangle ABC, if a =2x, b=2y and C=120^(@), then the area of the triangle is-

In a triangle ABC, (a+b+c)(b+c-a)=kbc if

In any triangle ABC "if" (b+c)/(a)="cot"(A)/(2) , prove that the triangle is right-angled.

In a triangle ABC if sinAsinB=(ab)/(c^(2)) , then the triangles is

In any triangle ABC, the value of (b^(2)sin 2C + c^(2) sin 2B) is-

In a triangle ABC if b=2, B=30^(@), then the area of the circumcircal of triangle ABC in square units is-