Home
Class 12
MATHS
In Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2...

In `Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c)=`

A

`4R Delta(cos A+sin B+cos C)`

B

`4R Delta(sin A+sin B+sin C)`

C

`4R Delta(1+4sin.(A)/(2)sin.(B)/(2)sin.(C )/(2))`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`L.H.S.=(1)/(2)(a^(2)(b+c-a)+b^(2)(c+a-b)+c^(2)(a+b-c))`
`=(1)/(2)(a(b^(2)+c^(2)-a^(2))+b(c^(2)+a^(2)-b^(2))+c(a^(2)+b^(2)-c^(2)))`
`=(1)/(2)(2abc cos A+2abc cos B + 2abc cos C)`
`=abc(1+4 sin.(A)/(2)sin.(B)/(2)sin.(C )/(2))`
`=4R Delta (1+4sin.(A)/(2)sin.(B)/(2)sin.(C )/(2))`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If in Delta ABC, (a -b) (s-c) = (b -c) (s-a) , prove that r_(1), r_(2), r_(3) are in A.P.

In triangle ABC, if a^(2) + b^(2) +c^(2) -bc -ca -ab=0, then the value of sin ^(2)A+ sin ^(2)B+sin ^(2)C is -

If in Delta ABC , Prove that, a^2 sin(B-C)= (b^2-c^2)sinA

If 2s =a+b+c,prove that, |{:(" "a^2,(s-a)^2,(s-a)^2),((s-b)^2," "b^2,(s-b)^2),((s-c)^2,(s-c)^2," "c^2):}|=2s^3(s-a)(s-b)(s-c)

Using vectors , prove that in a triangle ABC a^(2)= b^(2) + c^(2) - 2bc cos A where a,b,c are lengths of the ideas opposite to the angles A,B,C of triangle ABC respectively .

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

In any triangle ABC, if 8R^(2) =a^(2) + b^(2) +c^(2) , prove that, the triangle is right angled.

If 2s=a+b+c and A=|[a^2,(s-a)^2,(s-a)^2],[(s-b)^2,b^2,(s-b)^2],[(s-c)^2,(s-c)^2,c^2]| is equal to

In triangle ABC if a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2) then the values of B will be-