Home
Class 12
MATHS
In Delta ABC, circumrdius is 3 inradius ...

In `Delta ABC`, circumrdius is 3 inradius is 1.5 units. The value of a `acot^(2)A+b^(2)cot^(3)B+c^(3)cot^(4)C` is

A

`13 sqrt(3)`

B

`11sqrt(6)`

C

21

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Given `R:r=3:1.5=2`
`rArr Delta ABC` must be equilateral.
So `a=b=c=2R sin.(pi)/(3)=R sqrt(3)` (By sine rule)
Now `a cot^(2)A+b^(2)cot^(3)B+c^(3)cot^(4)C`
`=R sqrt(3)((1)/(sqrt(3)))^(2)+(R sqrt(3))^(2)((1)/(sqrt(3)))^(3)+(R sqrt(3))^(3)((1)/(sqrt(3)))^(4)`
`=(R )/(sqrt(3))+(R^(2))/(sqrt(3))+(R^(3))/(sqrt(3))=(3+3^(2)+3^(3))/(sqrt(3))=(39)/(sqrt(3))=13sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

The values of 2cot^-1 (1/2)-cot^-1 (4/3) is

The value of cot((pi)/(4)-2cot^(-1)3) is -

Value of 2 cot^(-1)""(1)/(2)-cot^(-1)""(4)/(3) is-

In a Delta ABC, if b=20, c=21and sin A =3/5, then the value of a is

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

In a triangle ABC, a=2 cm, b=3 cm and c=4 cm, then the value of cos A is-

If in A B C ,A C is double of A B , then the value of cot(A/2)cot((B-C)/2) is equal to

In a triangle ABC, if 3a = b+c, then the value of cot ""(B)/(2) cot ""C/2 is-

If a = 1 , b = 2 , c = 3 , then find then value of (2a^(2)+2b^(2)+2c^(2)-ab-bc-ca)/(a^(3)+b^(3)+c^(3)-3abc)

In any triangle prove that cot(A/2)+cot (B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)