Home
Class 12
MATHS
AD, BE, CF are internal angular bisector...

AD, BE, CF are internal angular bisectors of `Delta ABC` and I is the incentre. If `a(b+c)sec.(A)/(2)ID+b(a+c)sec.(B)/(2)IE+c(a+b)sec.(C )/(2)IF=kabc`, then the value of k is (a) 1 (b) 2 (c) 3 (d) 4

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B


`(ID)/(AD)=(ID)/((2bc)/(b+c)cos.(A)/(2))=(a(b+c)sec.(A)/(2).ID)/(2abc)`
Now `(AI)/(ID)=(AB)/(BD)=(c )/((ac)/(b+c))=(b+c)/(a)`
`therefore (ID)/(AD)=(ID)/(AI+ID)=(a)/(a+b+c)`
`therefore (ID)/(AD)+(IE)/(BE)+(IF)/(CF)=(a+b+c)/(a+b+c)=1`
`therefore a(b+c)sec.(A)/(2)ID+b(a+c)sec.(B)/(2)IE + c(a+b)sec.(C )/(2)IF`
= 2abc
`therefore k = 2`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

A, B and C are interior angles of a triangle ABC, then sin ((B + C)/(2)) =

Let A B C be a triangle. Let A be the point (1,2),y=x be the perpendicular bisector of A B , and x-2y+1=0 be the angle bisector of /_C . If the equation of B C is given by a x+b y-5=0 , then the value of a+b is (a) 1 (b) 2 (c) 3 (d) 4

In triangle ABC if a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2) then the values of B will be-

For any triangle ABC prove that (b-c)cot(A/2)+(c-a)cot(B/2)+(a-b)cot(C/2) =0

If |(b +c,c +a,a +b),(a +b,b +c,c +a),(c +a,a +b,b +c)| = k |(a,b,c),(c,a,b),(b,c,a)| , then the value of k, is 1 b. 2 c. 3 d. 4

In a triangle ABC, if 3a = b+c, then the value of cot ""(B)/(2) cot ""C/2 is-

C F is the internal bisector of angle C of A B C , then C F is equal to (a) (2a b)/(a+b)cos(C/2) (b) (a+b)/(2a b)cosC/2 (c) ( bsinA)/(sin(B+C/2)) (d) none of these

Factorise : a(b+c)^(2)+b(c+a)^(2)+c(a+b)^(2)-4abc

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)