Home
Class 12
MATHS
In Delta ABC if r1=2r2=3r3 and D is the ...

In `Delta ABC` if `r_1=2r_2=3r_3` and `D` is the mid point of `BC` then `Cos/_ADC` is (a) `7/25` (b) `-7/25` (c) `24/25` (d) `-24/25`

A

`(7)/(25)`

B

`-(7)/(25)`

C

`(24)/(25)`

D

`-(24)/(25)`

Text Solution

Verified by Experts

The correct Answer is:
D

`r_(1)=2r_(1)=3r_(3)`
`rArr (Delta)/(s-a)=(2Delta)/(s-b)=(3Delta)/(s-c)=(Delta)/(k)` (say)
`rArr s-a=k, s-b=2k, s-c=3k`
`rArr 3s-(a+b+c)=6k rArr s=6k`
`rArr (a)/(5)=(b)/(4)=(c )/(3)=k`
So, `a^(2)=b^(2)+c^(2)`
`Delta ABC` is right angled `Delta, angle A =90^(@)` and D is midpoint of BC,
AD = DC (radius of circumicrcle)
`rArr angle DAC = C rArr angle ADC = 180^(@)-2C`
`rArr cos angle ADC`
`=cos(180^(@)-2C)`
`=-cos 2C`
`-(2cos^(2)C-1)`
`=1-2cos^(2)C`
`=1-2xx(16)/(25)=(-7)/(25)`
`["from " Delta ABC, cos C=(b)/(a)=(4)/(5)]`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, if r_(1) = 2r_(2) = 3r_(3) , then b : c is equal to

In triangle A B C , if r_1=2r_2=3r_3, then a : b is equal to 5/4 (b) 4/5 (c) 7/4 (d) 4/7

In triangle ABC, if a = 2 and bc = 9, then prove that R = 9//2Delta

In the triangle ABC, if a=5, b=7 and c=3, find the angle B and the circumradius R.

ABC is a triangle and D is the middle point of BC. If AD is perpendicular to AC, prove that, cosA cos C =(2(c^(2)-a^(2))/(3ca))

In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4 (b) 4/3 (c) 2/3 (d) 3/2

In A B C ,if a=10 and bcotB+ c cotC=2(r+R) then the maximum area of A B C will be (a) 50 (b) sqrt(50) (c) 25 (d) 5

In triangle ABC, D is the mid point of side BC . If AD is perpendicular to AC . then prove that cosA cosC =(2(c^2-a^2))/(3ca)

Given that Delta = 6, r_(1) = 2,r_(2)= 3, r_(3) = 6 Circumradius R is equal to a) 2.5 b)3.5 c)1.5 d)none of these

Delta ABC is an equilateral triangle . D is a point on the side BC such that BD = (1)/(3) BC . Prove that 7 AB^(2) = 9AD^(2)