Home
Class 12
MATHS
In the ambiguous case if the remaining a...

In the ambiguous case if the remaining angles of a triangle with given a, b, A and `B_(1),B_(2),C_(1),C_(2)` then `(sin C_(1))/(sin B_(1))+(sin C_(2))/(sin B_(2))=`

A

2 cos A

B

2 sin B

C

2 tan A

D

2 cot A

Text Solution

Verified by Experts

The correct Answer is:
A

`a^(2)=b^(2)+c^(2)-2bc` coa A
or `c^(2)-(2b cos A)c+b^(2)-a^(2)=0`
Above equation has two roots `c_(1)` and `c_(2)`
`therefore c_(1)+c_(2)=2bcos A` and `c_(1)c_(2)=b^(2)-a^(2)`
`sin B_(1)=sin B_(2)=(b sin A)/(a)`
`sin C_(1)=(c_(1)sin A)/(a)`
`sin C_(2)=(c_(2)sin A)/(a)`
`therefore (sin C_(1))/(sin B_(1))+(sin C_(2))/(sin B_(2))=(c_(1)+c_(2))/(b)=2 cos A`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

A, B and C are interior angles of a triangle ABC, then sin ((B + C)/(2)) =

If A,B,C are the angles of a triangle, find the maximum values of : sin A sin B sin C

(ix) (a^(2) sin (B-C))/(sinA) + (b^(2) sin (C-A))/(sin B) + (c^(2) sin (A-B))/(sin C)=0

If A,B,C be the angles ofa triangle then prove that (sin A + sin B)(sin B + sin C)(sinC + sinA) gt sin A sin B sinC .

If A, B and C are interior angles of a triangle ABC, then show that sin((B+C)/2) =Cos (A/2) ​

If A,B,C are the angles of a triangle, show that, (i) sin B cos(C +A) + cos B sin (C +A) = 0

If A , B and C are interior angles of triangle ABC ,then show that sin ((B+C)/( 2) )=cos (A/2)

A,B,C are three angles of a triangle and "sin" (A+c/2)= n "sin" C/2 "tan" A/2 "tan" B/2 =

If the angles of a triangle be, A,B,C and cos theta (sin B+ sin C) = sin A , prove that "tan"^(2)( theta)/(2)="tan" (B)/(2) "tan"(C)/(2)

ABC is an acute angled triangle in which cosec (B+C-A) =1 and cot (C+A-B)=1/sqrt(3) , then sin A =