Home
Class 12
MATHS
Let ABC and AB'C be two non-congruent tr...

Let ABC and AB'C be two non-congruent triangles with sides BC=B'C=5, AC=6, and `angleA` is fixed. If `A_(1)` and `A_(2)` are the area of the two triangles ABC and AB'C, then the value of `(A_(1)^(2)+A_(2)^(2)-2A_(1)A_(2)cos 2A)/((A_(1)+A_(2))^(2))` is

A

`9//36`

B

`25//36`

C

`25//16`

D

`16//25`

Text Solution

Verified by Experts

The correct Answer is:
B


We have cos `A=(6^(2)+c^(2)-5^(2))/(2.6.c)`
`rArr c^(2)-(12 cos A)c+11=0`
`rArr c_(1)+c_(2)=12 cos A , c_(1)c_(2)=11`
`rArr A_(1)=(1)/(2)bc_(1)sin A, A_(2)=(1)/(2)bc_(2) sin A`
Given expression `=((A_(1)+A_(2))^(2)-2A_(1).A_(2)(2 cos^(2)A))/((A_(1)+A_(2))^(2))`
`= 1-4 cos^(2)A((A_(1)A_(2))/((A_(1)+A_(2))^(2)))`
`=1-4 cos^(2)A(((1)/(4)b^(2)sin^(2)A c_(1)c_(2))/((1)/(2)b^(2)sin^(2)A(c_(1)+c_(2))^(2)))`
`=1-4cos^(2)A((11)/(144xx cos^(2)A))=(25)/(36)`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If A_(1), A_(2),..,A_(n) are any n events, then

If a_(r)= (cos 2r pi + i sin 2r pi)^(1/9) . Then the value of |(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9))| is

If a_(1), a_(2) , a_(3),…,a _(n+1) are in A. P. then the value of (1)/(a _(1)a_(2))+(1)/(a_(2)a_(3))+(1)/(a_(3)a_(4))+...+(1)/(a_(n)a_(n+1)) is-

Find the coordinates of the centriod of the triangle whose vertices are ( a_(1), b_(1), c_(1)) , (a_(2), b_(2), c_(2)) and (a_(3), b_(3), c_(3)) .

If positive integers a_(1), a_(2), a_(3),… are ion A.P. such that a_(8) +a_(10) =24, then the value of a_(9) is-

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

In the triangle ABC, two sides b,c and angle B are given, side a has two values a_(1) and a_(2) . Show that |(a_(1)-a_(2))|=2sqrt(b^(2)-c^(2)sin^(2)B) .

If a_(1),a_(2),a_(3),a_(4),...,a_(n) are n positive real numbers whose product is a fixed number c, then the minimum value of a_(1)+ a_(2) + ...+a_(n-1)+2a_(n) is-

If a_(1), a_(2), a_(3),…, a_(2k) are in A.P., prove that a_(1)^(2) - a_(2)^(2) + a_(3)^(2) - a_(4)^(2) +…+a_(2k-1)^(2) - a_(2k)^(2) = (k)/(2k-1)(a_(1)^(2) - a_(2k)^(2)) .