Home
Class 12
MATHS
A B C D E is pentagon, prove that v...

`A B C D E` is pentagon, prove that ` vec A B` + ` vec B C` + ` vec C D` + ` vec D E+ vec E A` = ` vec0` ` vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C`

Text Solution

Verified by Experts

`vecR=vec(AB)+vec(AE)+vec(BC)+vec(DC)+vec(ED)+vec(AC)`
`" "=(vec(AB)+vec(B C))+(vec(AE)+vec(ED)+vec(DC))+vec(AC)`
`" "=vec(AC)+vec(AC)+vec(AC)=3vec(AC)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 4|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 2|1 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

ABCDE is a pentagon. Prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/((vec b- vec a).(vec d- vec a)) + (| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/((vec b- vec c).( vec d- vec c))=0dot

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= a. [ vec a\ vec b\ vec c] b. 0 c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

Statement 1: In DeltaA B C , vec (A B)+ vec (BC)+ vec (C A)=0 Statement 2: If vec (O A)= vec a , vec (O B)= vec b ,t h e n \ vec (A B)= vec a+ vec b

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c . Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] ; then vec d equally inclined to vec a , vec b and vec c . (a) statement 1 is true but statement 2 is false. (b) statement 2 is true but statement 1 is false. (c)both the statements are true. (d) both the statements are false.

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is parallel to vec b- vec c

If vec a is parallel to vec bxx vec c , then ( vec axx vec b) . ( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

A , B , C , D are any four points, prove that vec A Bdot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=4(Area \ of triangle ABC).