Home
Class 12
MATHS
if vec Ao + vec O B = vec B O + vec ...

if ` vec Ao` + ` vec O B` = ` vec B O` + ` vec O C` ,than prove that B is the midpoint of AC.

Text Solution

Verified by Experts

`vec(AO)+vec(OB)=vec(BO)+vec(OC)`
`rArr" "vec(AB)=vec(BC)`
Thus, vectors `vec(AB)and vec(BC)` are collinear
`rArr" "` Points A, B, C are collinear
Also `" "|vec(AB)|=|vec(BC)|`
`rArr" "B` is the midpoint of `AC`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 3|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 4|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

If vec A O+ vec O B= vec B O+ vec O C , then A ,B and C are (where O is the origin) a. coplanar b. collinear c. non-collinear d. none of these

Prove that the resultant of two forces acting at point O and represented by vec O B and vec O C is given by 2 vec O D ,where D is the midpoint of BC.

If O A B C is a tetrahedron where O is the origin and A ,B ,a n dC are the other three vertices with position vectors, vec a , vec b ,a n d vec c respectively, then prove that the centre of the sphere circumscribing the tetrahedron is given by position vector (a^2( vec bxx vec c)+b^2( vec cxx vec a)+c^2( vec axx vec b))/(2[ vec a vec b vec c]) .

If vec a , vec b , vec c , vec d are the position vector of point A , B , C and D , respectively referred to the same origin O such that no three of these point are collinear and vec a + vec c = vec b + vec d , than prove that quadrilateral A B C D is a parallelogram.

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

If vector vec a+ vec b bisects the angle between vec a and vec b , then prove that | vec a| = | vec b| .

ABCDE is a pentagon. Prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

Let vec a , vec b ,a n d vec c be non-coplanar vectors and let the equation vec a^' , vec b^' , vec c ' are reciprocal system of vector vec a , vec b , vec c , then prove that vec axx vec a^'+ vec bxx vec b^'+ vec cxx vec c ' is a null vector.

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,