Home
Class 12
MATHS
ABC is a triangle and P any point on ...

ABC is a triangle and P any point on BC. if ` vec P Q` is the sum of ` vec A P` + ` vec P B` +` vec P C` , show that ABPQ is a parallelogram and Q , therefore , is a fixed point.

Text Solution

Verified by Experts

Here `" "vec(PQ)=vec(AP)+vec(PB)+vec(PC)`
`" "vec(PQ)-vec(PC)=Avec(AP)+vec(PB)`
`" "vec(PQ)+vec(CP)=Avec(AP)+vec(PB)`
`" "vec(CQ)=vec(AB)rArrCQ=AB and CQ "||"AB`
Therefore, ABQC is a parallelogram.
But A, B and C are given to be fixed points and ABQC is a parallelogram. Therefore, Q is a fixed point.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 7|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 8|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5|1 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

ABC is a triangle and P any point on BC. If vec(PQ) is the sum of vec(AP)+vec(PB)+vec(PC) , show that ABQC is a parallelogram and Q, therefore, is a fixed point.

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is parallel to vec b- vec c

Statement 1: let A( vec i+ vec j+ vec k)a n dB( vec i- vec j+ vec k) be two points. Then point P(2 vec i+3 vec j+ vec k) lies exterior to the sphere with A B as its diameter. Statement 2: If Aa n dB are any two points and P is a point in space such that vec P Adot vec P B >0 , then point P lies exterior to the sphere with A B as its diameter.

A , B , C , D are any four points, prove that vec A Bdot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=4(Area \ of triangle ABC).

If vec(AO)+vec(OB)=vec(BO)+vec(OC) , show that the points A, B and C are collinear.

If vec p , vec q , vec r denote vector vec bxx vec c , vec cxx vec a , vec axx vec b , respectively, show that vec a is parallel to vec qxx vec r , vec b is parallel vec rxx vec p , vec c is parallel to vec pxx vec q .

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec d , then show that A B C D is parallelogram.

ABCD is a quadrilateral and E is the point of intersection of the lines joining the middle points of opposite side. Show that the resultant of vec (OA) , vec(OB) , vec(OC) and vec(OD) = 4 vec(OE) , where O is any point.

If vec axx vec b= vec cxxvec d and vec axxvec c= vec bxxvec d, vec a ne vec d, vec b ne vec c then show that vec b- vec c is parallel to vec a-vec d

In a quadrilateral P Q R S , vec P Q= vec a , vec Q R = vec b , vec S P= vec a- vec b ,M is the midpoint of vec Q Ra n dX is a point on S M such that S X=4/5S Mdot Prove that P ,Xa n dR are collinear.