Home
Class 12
MATHS
Two forces vec A B and vec A D are act...

Two forces ` vec A B` and ` vec A D` are acting at vertex A of a quadrilateral ABCD and two forces ` vec C B` and ` vec C D` at C prove that their resultant is given by 4` vec E F` , where E and F are the midpoints of AC and BD, respectively.

Text Solution

Verified by Experts

`vec(AB)+vec(AD)=2vec(AF)`, where F is the midpoint of BD.
`" "vec(CB)+vec(CD)=2vec(CF)`
`therefore" "vec(AB)+vec(AD)+vec(CB)+vec(CD)=2(vec(AF)+vec(CF))`
`" "=-2(vec(FA)+vec(FC))`
`" "=-2[2vec(FE)]`, where E is the midpoint of AC
`" "=4vec(EF)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 8|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 9|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 6|1 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

Prove that the resultant of two forces acting at point O and represented by vec O B and vec O C is given by 2 vec O D ,where D is the midpoint of BC.

ABCDE is a pentagon. Prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

If A B C D is quadrilateral and Ea n dF are the mid-points of A Ca n dB D respectively, prove that vec A B+ vec A D + vec C B + vec C D =4 vec E Fdot

if vec (AO) + vec (O B) = vec (B O) + vec (O C) ,than prove that B is the midpoint of AC .

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

Given vec(C )= vec(A) xx vec(B) and vec(D) = vec(B) xx vec(A) . What is the angle between vec(C ) and vec(D) ?

For any four vectors, vec a , vec b , vec c and vec d prove that vec d.( vec axx( vec bxx( vec cxx vec d)))=( vec b. vec d)[ vec a \ vec c \ vec d] .