Home
Class 12
MATHS
If the vectors ahati+hatj+hatk, hati+bha...

If the vectors `ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1, b!=1,c!=1)` are coplanar then the value of `1/(1-a)+1/(1-b)+1/(1-c)` is (A) 0 (B) 1 (C) -1 (D) 2

Text Solution

Verified by Experts

The correct Answer is:
`1`

Given that the vectors `vecu = a hati + hatj +hatk`,
`vecv =hati +b hatj +hatk and vecw =hati +hatj +chatk`, where a, b, c `ne` 1 are coplanar. Therefore,
`|{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}|=0`
Operating `C_1 to C_1 - C_2, C_2 to C_2 - C_3`
`|{:(a-1,,0,,1),(1-b,b-1,,1),(0,,1-c,,c):}|=0`
Expanding
`c(a-1) (b-1)+(1-b)(1-c)-(1-c)(a-1)=0`
`" "(c)/(1-c) + (1)/(1-a)+ (1)/(1-b) =0`
`" "(c)/(1-c) + 1+ (1)/(1-a)+ (1)/(1-b) =1`
`" " (1)/(1-c) + (1)/(1-a) + (1)/(1-b)=1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ARCHIVES SUBJECTIVE TYPE|9 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors hati -2 hatj+3hatk , -2hati+3hatj-4hatk and hati -3hatj +5hatk are coplanar.

If veca=hati+3hatj+hatk, vecb=2hati-hatj-hatk and vec c=m hati+7hatj+3hatk are coplanar, then the value of m is -

If the vectors a hati + hatj + hatk , hati + b hatj + hatk and hati + hatj + chatk are coplanar where a ne 1 , b ne 1 , c ne 1 , prove that 1/(1-a)+1/(1+b)+1/(1-c) = 1 .

If the vectors vec a=2hati-hatj+hatk, vec b=hati+mhatj-3hatk and vec c =3hati-4hatj+5hatk are coplanar, then find m.

The vectors (29)/(3)hati-4hatj+5hatk, 2hati+mhatj+hatk and veci+2hatj+hatk are coplanar, find m.

if b+c=a^2, c+a=b^2 and a+b=c^2 then find the value of 1/(1+a) + 1/(1+b) +1/(1+c)

If the four points with position vectors -2hati+hatj+hatk,hati+hatj+hatk,hatj-hatk and lamdahatj+hatk are coplanar, then lamda =

If a + 1/b = b + 1/c = 1, then the value of c + 1/a is

Show that the points A(-2hati+3hatj+5hatk),B(hati+2hatj+3hatk)andC(7hati-hatk) are collinear.