Home
Class 12
MATHS
If x + y + z = 12, x^(2) + Y^(2) + z^(2)...

If `x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96` and `(1)/(x)+(1)/(y)+(1)/(z)= 36` . Then find the value `x^(3) + y^(3)+z^(3).`

Text Solution

Verified by Experts

To get the value of `x^(3)+Y^(3) + z^(3) - 3xyz`
`= (x + y + z ) (x^(2)+Y^(2)+x^(2) - xy- yz - zx)` …(1)
We need the value of xyz and xy + yz + zx.
We have `(x + Y + z)^(2) = 144`
`therefore x^(2)+y^(2)+z^(2)+2xy+2yz+2xz=144`
`rArr `96 + 2(xy + yz + xz) =144
`rArr `xy+ yz+ zx = 24
Given that `(1)/(x)+(1)/(x)+(1)/(z)= 36`
`therefore (xy+yz+zx)/(xyz)=36`
`rArr xyz = (24)/(36)=(2)/(3)`
From (1),
`x^(3)+y^(3)+z^(3) - 2 = 12xx(96-24)`
=864
So, `x^(3)+y^(3)+z^(3) = 866`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES|14 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=12 and x^2+y^2+z^2=96 and 1/x+1/y+1/z=36 , then find the value of x^3+y^3+z^3

If (2x)/3=(4y)/5=(7z)/9 then find the value of (4x+12y-21z)/(3y) .

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If a^(x)a^(y)a^(z)=1 , " then " x^(3)+y^(3)+z^(3)=?

If x^((1)/(3)) + y^((1)/(3)) + z^((1)/(3)) = 0 , then prove that (x + y + z)^(2) = 27 xyz

If (x)/(y)+(y)/(z)+(z)/(x)=0, " then find "[((x)/(y))^(3)+((y)/(z))^(3)+((z)/(x))^(3)]

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then then the value of (x+y+z) is -

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angle, then find the value of k .

The lines (x)/(1)=(y)/(2)=(z)/(3) and (x-1)/(-2)=(y-2)/(-4)=(3-z)/(6) are