Home
Class 12
MATHS
If a + b + c = 0 and a^(2) + b^(2) + c^(...

If `a + b + c = 0 and a^(2) + b^(2) + c^(2) = 4,` them find the value of `a^(4) + b^(4) +c^(4)`.

Text Solution

Verified by Experts

The correct Answer is:
`a^(4) + b^(4) +c^(4) = 8`

`(a + b + c)^(2) = 0`
`rArr a^(2) + b^(2) + c^(2) + 2(ab + bc + ca) = 0`
`rArr ab + bc + ca = -2`
On squaring, we get
`a^(2) b^(2) + b^(2)c^(2)+ c^(2)a^(2)+ 2(ab^(2)c + 2a^(2) bc + 2bac^(2) = 4`
`rArr a^(2) b^(2) + b^(2)c^(2)+ c^(2)a^(2)+ 2abc (a + b + c) = 4`
`rArr a^(2) b^(2) + b^(2)c^(2)+ c^(2)a^(2) = 4`
Now `a^(2) + b^(2) + c^(2) = 4`
On squaring, we get
`a^(4)+ b^(4)+ c^(4)+2(a^(2) b^(2) + b^(2)c^(2)+ c^(2)a^(2) = 16`
`rArr a^(4)+ b^(4)+ c^(4)= 8`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.4|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.5|4 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.2|5 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

If a/2 = b/3 = c/4 = (2a - 3b + 4c)/p , then find the value of P .

If a=3, b=4, c=5, find the value of tan( B/2) .

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a/2=b/3 =c/4 =(3a-ab+4c)/p , then find the value of p.

If P(A) = 2/3, P(B) = 1/2 and P(A uu B) = 3/4 then find the value of P(A^C uu B^C) .

If a^(2) +b +2a sqrtb =7+ 4sqrt3 and c^(2) +d -2csqrtd =1 then find the value of (a + b +c +d) .

In triangle ABC if a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2) then the values of B will be-

If a/2=b/3=c/5=(3a-5b+4c)/(K) then find the value of K.

If a ,b ,c ,d ,e are in A.P., the find the value of a-4b+6c-4d+edot