Home
Class 12
MATHS
Is the following computation correct? If...

Is the following computation correct? If not give the correct computation: `[sqrt((-2))dotsqrt((-3))]=sqrt((-2)dot(-3))=sqrt(6)`

Text Solution

Verified by Experts

The correct Answer is:
Not correct

The said computation is not correct, because -2 and -3 both are negative and `sqrt(ab) = sqrt(a) sqrt(b)` is ture when at least one of a and b is positive or zero. The correct computation is
`(sqrt(-2))(sqrt(-3))= (isqrt(2)) (isqrt(3))=i^(2) sqrt(6) = -sqrt(6)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise SLOVED EXAMPLES|15 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Is the following computation correct? If not give the correct computation : sqrt((-2))sqrt((-3))=sqrt((-2)(-3))=sqrt((-6))

Solve sqrt(x-1)>sqrt(3-x)dot

(2sqrt(-5)+3sqrt(-2))(-3sqrt(-8)-sqrt(-20))

Simplify : 2sqrt(-18)+3sqrt(-50)-6sqrt(-8)

Simplify : (3sqrt(-1)+sqrt(-2))div(2-sqrt(-4))

sqrt(3)x^(2) - sqrt(2)x + 3sqrt(3)=0

Factorise : 6sqrt(3)a^(2)-21a+5sqrt(3)

Simplify: 1/sqrt(11-2sqrt(30))-3/(sqrt7-2sqrt(10))-4/(sqrt(8+4sqrt3))

Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)