Home
Class 12
MATHS
Find the value of (i^(592)+i^(590)+i^(5...

Find the value of `(i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))-1` `(1+i)^6+(1-i)^6`

A

`-2`

B

`0`

C

`2`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
A

`(i^(584)(i^(8)+i^(6)+i^(4)+i^(2)+1))/(i^(574)(i^(8)+i^(6)+i^(4)+i^(2)+1))-1=(i^(584))/(i^(574)) -1`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise SLOVED EXAMPLES|15 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

The value of (i^(592)+i^(590)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574)) will be

Find the value of (1+ i)^(6) + (1-i)^(6)

The value of i^9+1/i^5 is

Find the amplitude of i/(1-i).

Find the value of 1+i^2+i^4+i^6+i^8

The value of [(1+i)^(6) +(1-i) ^(6)] is-

The value of (1-i)^(-2)-(1+i)^(-2) is

Find the value of 1+i^2+i^4+i^6++i^(2n)

Find the real part of (1-i)^(-i)dot

Find the modulus : (1-i)/(3-4i)