Home
Class 12
MATHS
If (3pi)/2 < alpha < 2pi then the modulu...

If `(3pi)/2` < `alpha` < `2pi` then the modulus argument of `(1+cos 2alpha)+i sin2alpha`

Text Solution

Verified by Experts

`z = (1-cos2 alpha)+ i sin 2alpha`
`= 2sin^(2) alpha + i (2sin alpha cos alpha)`
`=2 sin alpha(sin alpha + i cos alpha)`
`=-2 sin alpha (-sin alpha - i cos alpha)`
`=-2 sin alpha (cos((3pi)/(2)-alpha)+ sin ((3pi)/(2)-alpha))`
Thus, `|z| = - s sin alpha`
Alos, `(3pi)/(2) - alpha in ((-pi)/(2),0)`
Therefore, z lies in the fourth quadrant.
`therefore arg(z) = (3pi)/(2) =- alpha`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.4|7 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If (pi)/2 < alpha < (3pi)/2 then the modulus argument of (1+cos 2alpha)+i sin2alpha

The value of cos ((3pi)/2 + x)cos (2pi + x){cot ((3pi)/2 - x) + cot (2pi + x)} is-

Find the number of solutions to log_(e) |sin x| = -x^(2) + 2x in [-(pi)/(2), (3pi)/(2)] .

Prove that the function f given by f (x) = log cos x is decreasing on (0,(pi)/(2)) and increasing on ((3pi)/(2) ,2pi) .

Let f(x) = |x|+|sin x|, x in (-pi/2, (3pi)/2) . Then, f is :

int_0^pi(xtanx)/(secx+cosx)dx is (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

The area bounded by the curves y=cosx and y=sinx between the ordinates x=0 and x=(3pi)/2 is

If pi lt A lt (3pi)/(2) and tan A""=4/3, then the value of (5 sin 2A + 4 cos A + 3 sin A) is-

For -(pi)/(2) lt x lt (3pi)/(2) the value of (d)/(dx){"tan"^(-1)(cosx)/(1+sinx)} is equal to

Draw the graph of y =cos x between x =(pi)/(2) and x =(3pi)/(2) .Find the area between this curve and the x-axis